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Sagebrush Steppe Shrub Height and Canopy Cover Estimation Using LiDAR and 

Landsat 5 TM Data 

 

Thesis Abstract – Idaho State University (2011) 

 

This research explored the utility of Light Detection and Ranging (LiDAR) data and 

LiDAR- Landsat 5 Thematic Mapper (TM) data fusion for sagebrush steppe shrub 

classification in southwestern Idaho. The objectives were to determine: 1) the relationship 

between field-measured and LiDAR-derived shrub heights, 2) if LiDAR data could be 

used to accurately classify the varying shrub species based on height, 3) the relationship 

between LiDAR-derived and field-measured shrub canopy cover estimates, and 4) if 

LiDAR fusion with Landsat 5 TM data further improves canopy cover estimations. Field 

data were collected during the summer of 2010 in 100 field plots across three study areas. 

The results indicated there was a strong relationship between LiDAR-derived and field-

measured shrub heights (R
2
 = 0.685) across all three study areas. LiDAR generally 

underestimated shrub height by 33 cm.  LiDAR-derived and field-measured shrub canopy 

cover estimates were significantly related (R
2
 = 0.282). This relationship was further 

improved by manually optimizing the ground/vegetation thresholds used in the LiDAR 

processing (R
2
 = 0.499). LiDAR generally underestimated shrub canopy cover with an 

average root mean square error (RMSE) of 12.86%.   The fusion of LiDAR-derived 

canopy cover with Landsat 5 TM-derived components only slightly improved canopy 

cover estimates. Overall, these results provide important contributions of the utility of 

LiDAR-derived information for land management in sagebrush steppe.
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Chapter 1: Introduction and Background 

Statement of Problem  

Arid and semi-arid ecosystems comprise roughly one third of the Earth‟s land surface and 

nearly 630,000 km
2
 of that occurs as sagebrush steppe on the Columbia, Great Basin, 

Snake River and Colorado Plateaus (Anderson and Inouye 2001). The sagebrush 

ecosystems of the western U.S. have been adversely affected by human activity, the 

spread of invasive plants, energy development, livestock overgrazing, and disrupted 

natural disturbance regimes (Braun et al. 1976; Leu and Hanser 2010; Meinke et al. 2009; 

Noson et al. 2006).  Approximately 70% of the sagebrush habitats are retained on public 

land that can be readily managed to sustain or improve this vast ecosystem, but are 

considered one of the least protected (Knick 2010). Sagebrush habitats fall under the 

general land cover category as rangeland, which is defined as a land resource 

characterized by non-forest native vegetation and is primarily used by livestock for 

grazing and roaming (Hunt et al. 2003). Because these areas are so vast or inaccessible, it 

is time-consuming and expensive to conduct extensive field surveys without the use of 

remote sensing technology (Washington-Allen et al. 2006). This study explored the use 

of Light Detection and Ranging (LiDAR) and multispectral Landsat 5 Thematic Mapper 

(TM) imagery as tools for sagebrush steppe vegetation classification because these 

remote sensing technologies can generate datasets for vast geographic areas. 

 Important vegetation characteristics such as plant composition, height, and cover 

influence biodiversity and wildlife habitat and must be efficiently monitored to provide 

the basis for effective land management (Anderson and Inouye 2001; Dubayah et al. 

1997). Aerial and satellite imagery can only provide a two-dimensional horizontal view 
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of their targets while a LiDAR dataset can provide three-dimensional ground and 

vegetation information (Campbell 2007; Hudak et al. 2009).  Much of the previous 

LiDAR research has been conducted in forested ecosystems and considerably less is 

known about the utility of LiDAR for the assessment of non-forested ecosystems with 

predominantly short (<2 m) vegetation (Hudak et al. 2009; Hopkinson et al. 2006). Much 

of this forest-based LiDAR research has focused on estimating vegetation height, while 

only a few studies have tested LiDAR as a tool for cover estimation (e.g. Bao et al. 2008; 

Chen et al. 2004; Griffin et al. 2008; Hopkinson and Chasmer 2009; Korhonen et al. 

2011; Martinuzzi et al. 2009; Riano et al. 2004; Smith et al. 2009). A few studies have 

attempted to investigate the utility of LiDAR to estimate semi-arid rangeland canopy 

cover using laser altimeter data (Ritchie et al. 1992; Ritchie et al. 2001; Weltz et al. 

1994).  No research to-date has investigated the use of discrete-return, small-footprint 

LiDAR for estimating semi-arid rangeland shrub canopy cover.     

 Previous studies have documented the advantages of integrating LiDAR structural 

data with spectral imagery to further improve  accuracies in vegetation identification, 

classification, and composition (e.g. Bork and Su 2007; Chen et al. 2004; Garcia-

Gutiérrez et al. 2010; Geerling et al. 2009; Hudak et al. 2001; Hudak et al. 2009; Jones et 

al. 2010; Kaheil and Creed 2009; Kempeneer et al. 2009; Maxa and Bolstad 2009; Mundt 

et al. 2006; Popescu and Wynne 2004; Riano et al. 2007; Varga and Asner 2008; Voss 

and Sugumaran 2008; Wulder et al. 2009). All Landsat multispectral imagery is 

publically available at no cost. New images are taken bi-monthly world-wide (81º N to 

81º S), and are typically processed to Standard Terrain Correction (Level 1T; 

http://glovis.usgs.gov).  A review of articles from the journal Landscape Ecology (2004-



3 
 

2008) indicates that 42% of studies using remote sensing techniques or data used Landsat 

imagery, while less than 1% used LiDAR data, and only 2% used more than one type of 

remote sensing data (Newton et al. 2009).  The no-cost and easy acquisition of the 

Landsat archives make it an appealing imagery for investigating the fusion of LiDAR and 

multispectral imagery for canopy cover, which to-date has not been extensively explored 

in a semi-arid rangeland ecosystem.   

 This study assessed the shrub height and canopy cover estimation accuracy of a 

discrete-return, small-footprint LiDAR dataset collected within the USDA-ARS 

Reynolds Creek Experimental Watershed (RCEW) in southeast Idaho. This study focused 

on the lower elevation sagebrush-grassland communities that dominate most of the 

watershed, although the vegetation communities within the RCEW vary depending upon 

elevation (Slaughter et al. 2001).  The objectives of this study were to: 1) quantify the 

correlation between field-based and LiDAR-derived shrub heights, and 2) determine if 

LiDAR-derived vegetation heights can be used to accurately classify the varying shrub 

species within a sagebrush steppe ecosystem, 3) determine if LiDAR data can be used to 

estimate shrub canopy cover, and 4) determine if LiDAR fusion with Landsat 5 TM data 

further improves canopy cover estimations.  

Background 

LiDAR data 

LiDAR data have only been used for Earth imaging since the 1980‟s, although LiDAR 

data have been investigated since the 1960‟s (Ackermann 1999; Campbell 2007; Flood 

2001). LiDAR is also known as airborne laser swath mapping (ALSM), airborne laser 

scanning, or scanning laser altimetry (Harding 2008). Profiling lasers were the first 
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airborne lasers used and consisted of a single laser aimed directly below the aircraft that 

recorded a very high density of observations in a single track (Campbell 2007). The 

advancement of several technologies in the late 1980‟s has led to the sophisticated and 

highly accurate systems that are used today.  These systems can transmit thousands of 

pulses per second that are directed by a rotating or scanning mirror across a specified 

swath width below the aircraft, generally < ±20º off-nadir (Ackermann 1999; Campbell 

2007).   

 LiDAR technology is an active system that transmits energy pulses. The pulse reflects 

off of the Earth‟s surface, travels back up to the LiDAR system detector, and its return 

time is recorded and used to calculate the distance between the sensor and the Earth‟s 

surface. The wavelength of the laser is typically in the near-infrared range (900-1064 nm) 

where vegetation reflectance is high, but some studies prefer using a system that utilizes 

the green wavelength (~532 nm) for shallow penetration into water (Leksy 2002). LiDAR 

systems can either be classified as discrete-return (small footprint) or waveform (large 

footprint).  Discrete-return systems can receive either single or multiple return pulses. 

Small footprint airborne LiDAR typically has a pulse diameter of 0.2-1 m. Waveform 

systems record a continuous return pulsethat may have a footprint of 5 m or larger 

(Campbell 2007; Lefsky 2002). Discrete-return systems receive the backscattered pulses 

creating a high resolution, three-dimensional point-cloud of raw elevation data that 

depicts the Earth‟s surface with centimeter to decimeter absolute vertical accuracy 

(Campbell 2007; Harding 2008; Lefsy 2000; Wehr and Lohr 1999). The sampling density 

of discrete-return LiDAR on the ground can vary (1-20 points per m
2
) and depends on the 

detector‟s sensitivity, response time, and detection threshold, the system‟s pulse rate and 
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scan angle, and the flying speed and height of the aircraft (Ackermann 1999; Harding 

2008).  Instead of receiving back the entire pulse, waveform systems record the time-

varying intensity and multiple echoes of each return (Lefsy 2002; Wehr and Lohr 1999). 

LiDAR systems are synchronized with a position and orientation system, consisting of a 

differential GPS and an inertial measurement unit (IMU), allowing the precise location of 

each 3-D point to be known (Ackermann 1999; Wehr and Lohr 1999). The GPS records 

the accurate geographic location and the IMU helps control and record the roll, pitch, and 

yaw of the aircraft while the LiDAR system is scanning (Campbell 2007).  Baltsavias 

(1999) provides a more detailed summary of basic relations and formulas concerning 

LiDAR. 

 Discrete-return LiDAR data can be interpolated to create surface elevation models 

and bare-earth digital elevation models or used to estimate a variety of vegetation metrics 

such as height, biomass, crown size, leaf area index, and vertical canopy structure (Bater 

and Coops 2009; Campbell 2007; Wehr and Lohr 1999). The estimates of these various 

vegetation metrics are typically based on their height above a LiDAR-derived continuous 

digital elevation model (Bater and Coops 2009).  LiDAR is distinct from all other remote 

sensing technology because it can measure both the horizontal distribution and vertical 

height of vegetation communities (Fowler 2000 in Bork and Su 2007; Lefsky 2002). 

Previous research has found significant relationships between ground-based 

measurements and LiDAR-derived measurements of canopy height and cover in many 

different ecosystems (e.g. Bork and Su 2007; Clark et al. 2004; Gaveau and Hill 2003; 

Glenn et al. 2011; Hopkinson et al. 2005; Hopkinson and Chasmer 2009; Magnussen and 

Boudewyn 2000; Mitchell et al. in press; Magnussen et al. 1999; Martinuzzi et al. 2009; 
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Ritchie et al. 1992; Weltz et al.1994).  Thus, LiDAR data can be used to quickly measure 

variation in vegetation structure over large areas and collect data in areas that may be 

costly to access (Ritchie et al. 1995).   

 Relative to the number of forestry studies, little work has addressed LiDAR 

applications in rangeland ecosystems where vegetation is typically sparse and short in 

stature (<2 m).  Much of the rangeland-based research was conducted in the mid- to late 

90‟s by the United States Department of Agriculture – Agriculture Research Service 

(USDA-ARS) at experimental stations throughout the western U.S. using laser altimeters 

(profiling lasers). Ritchie et al. (1992) used a laser altimeter to measure canopy cover and 

distribution of vegetation at two rangeland areas in Texas and found a strong correlation 

between field-measured and laser-derived vegetation canopy cover and height.  Ritchie et 

al. (1995) used a laser altimeter to create a topographic profile of a semi-arid watershed 

and to create a cross section of a stream within an experimental rangeland watershed in 

Arizona.  Ritchie et al. (1996) used a laser altimeter to estimate land surface topography, 

gully and channel morphology, and vegetation height, cover and distribution at a semi-

arid study site in Niger, Africa.  They found that the vegetation frequency distribution of 

laser measurements were similar to the frequency distribution of field measurements. 

Weltz et al. (1994) found no significant difference between LiDAR (laser altimeter)-

derived and field-based vegetation height and cover measurements and used LiDAR data 

to differentiate between a mesquite savanna and a riparian vegetation plant community. 

Ritchie et al. (2001) summarized other laser altimetry studies conducted at other USDA-

ARS experimental stations.  Glenn et al. (2011) investigated LiDAR height estimation of 

individual sagebrush shrubs across various hillslopes and reported R
2
 values of as high as 
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0.64 and concluded that sloped terrain had little influence on height estimation.  Mitchell 

et al. (2011) used a high-point density LiDAR dataset (9.46 points/m
2
) to estimate 

sagebrush height across an extremely flat study area and found a strong relationship 

between LiDAR-derived and field-measured sagebrush height (R
2
 = 0.84 to 0.86).  

Mundt et al. (2006) and Streutker and Glenn (2006) used LiDAR data to classify 

sagebrush presence and absence over low-relief terrain. They found a lack of correlation 

between LiDAR-derived and field-measured heights below approximately 20 cm 

(Streutker and Glenn 2006). Sankey and Bond (2010) found that LiDAR-derived heights 

could be used to identify different sagebrush-steppe shrub community types based on 

height. The results of this previous research suggest that LiDAR is well suited for the 

estimation of vegetation height and this information may be used to classify varying 

shrub species.   

Landsat 

Landsat imagery is a valuable tool for land cover classification and change detection 

because of its long-term archive, mid-resolution, and free usage (http://glovis.usgs.gov/).  

Landsat satellites were the first U.S. satellites designed for observing the Earth‟s surface 

(Campbell 2007). Landsat has provided the longest continuous record of Earth imagery 

with its first satellite being launched in 1972 (Irons 2010).  Landsat 5 TM was launched 

in 1984 and is now managed by the U.S. Geological Survey. It is still in orbit today 

(Chander and Markham 2003).  Its sensor consists of 7 bands including blue-green (band 

1: 0.45 – 0.52 m), green (band 2: 0.52 – 0.60 m), red (band 3: 0.63 – 0.69 m), near-

infrared (band 4: 0.76 – 0.90 m), 2 mid-infrared (band 5: 1.55 – 1.75 m and band 7: 

2.08 – 2.35 m), and thermal infrared (band 6: 10.40 – 12.50 m). Each band has a 
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spatial resolution of 30 m except for the thermal infrared which has 120 m resolution 

(USGS 2010; Campbell 2007).   

 Landsat imagery is most widely used for classifying and/or quantifying general land 

cover types, degrees of disturbance, and change detection over a wide range of scales and 

ecosystems, including rangeland and sagebrush steppe communities (e.g. Afinowicz et al. 

2005; May et al. 1997; Cingolani et al. 2004; Chen & Gillieson 2009; Clark et al. 2001; 

Fang et al. 2005; Fisher et. al 2002; Homer et al. 2008; Jensen et al. 2001; Knick et al. 

1997; Kuemmerle et al. 2006; Lewis 1998; Ludwig et al. 2007; Marsett et al. 2006; 

Maynard et al. 2007; Munyati and Makgale 2009; Musick 1984; Nagler et al. 2005; 

Norton et al. 2009; Pech and Graetz 1986; Pickup 1994; Poulos 2009; Ramsey et al. 

2004; Roder et al. 2008; Sankey et al. 2009; Singh and Glenn 2009; Sivanpillai et al. 

2009; Sohn and Qi 2005; Xu et al. 2009). Accurately classifying and quantifying 

vegetation using Landsat in arid and semiarid ecosystems has been challenging for 

multiple reasons: vegetative cover in these ecosystems is generally sparse, vegetation 

varies structurally, the spectral reflectance of each pixel (30 m) includes the combination 

of soil and vegetation (potentially of more than 1 species) spectral responses; and many 

plant species exhibit spectral similarity (Frank and Tweddale 2006; Knick et al. 1997; 

Lewis 1998; Musick 1984; Sivanpillai et al. 2009: Tueller 1989; Weber 2006).  Some of 

these difficulties can be overcome by calculating vegetation indices, using multi-date 

images, or by estimating sub-pixel abundance through spectral unmixing.   

Indices for Vegetation Cover Estimation 

Vegetation indices are calculated through the addition, division, or multiplication of 

different Landsat bands and they attempt to measure vegetative vigor (Campbell 2007; 
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Jensen 2005).  Many of these indices take advantage of the inverse relationship between 

vegetation brightness in the red and infrared bands (Table 1). The Kauth-Thomas or 

“tasseled cap” equations transform Landsat data in a new three dimensional feature space 

with three axes that results in three new bands of information: 1) brightness, a weighted 

sum of all six bands, 2)greenness, which correlates to vegetation vigor, 3) and wetness, 

which is based on soil and plant moisture (Table 1; Crist 1985). 
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Table 1. Equations for common vegetation indices and the tasseled cap transforms using Landsat 5 TM bands (ρ = reflected radiant 

flux). 

Name Formula Reference 

greenness condition index (GI)
a
 𝝆band4 / 𝝆band3 Jordan 1969 

vegetation condition index (VI) 𝝆band7/ 𝝆band4 Sivanpillai et al. 2009 

normalized difference vegetation index 

(NDVI) 
𝝆band4 – 𝝆band3/ 𝝆band4 + 𝝆band3 Kriegler et al. 1969 

soil adjusted vegetation index (SAVI)
b
 (1 + L) (𝝆band4 – 𝝆band3)/(𝝆band4 + 𝝆band3 + L) Huete 1988 

soil adjusted total vegetation index 

(SATVI)
c
 

(𝝆band5 - 𝝆band3)/ 𝝆band5 + 𝝆band3 + L) * (1 + L) - 

(𝝆band7/ 2) 

Marsett et al. 2006 

mid-IR/red reflectance index (MIRI) 𝝆band7 – 𝝆band3/ 𝝆band7 + 𝝆band3 Sivanpillai et al. 2009 

mid-IR/red reflectance index 2 (MIRI2) 𝝆band5 – 𝝆band3/ 𝝆band5 + 𝝆band3 Solaimani et al. 2011 

near-IR/green reflectance index (VNIR) 𝝆band4 – 𝝆band2/ 𝝆band4 + 𝝆band2 Solaimani et al. 2011 

tasseled cap brightness (tcapB) 0.29 𝝆band1 + 0.25 𝝆band2 + 0.48 𝝆band3 + 0.56 𝝆band4 

+ 0.44𝝆band5 + 0.17 𝝆band7 

Crist 1985 

tasseled cap greenness (tcapG)  - 0.27 𝝆band1 - 0.22 𝝆band2 - 0.55 𝝆band3 + 0.72 

𝝆band4 + 0.07 𝝆band5 – 0.16 𝝆band7 

 

tasseled cap wetness (tcapW) 0.14 𝝆band1 + 0.18 𝝆band2 + 0.33 𝝆band3 + 0.34 𝝆band4 

– 0.62 𝝆band5 – 0.42𝝆band7 

  

     
a
Also known as the Simple Ratio 

       
b
L is the soil brightness correction factor, L =0.5 is suitable for most situations (Huete 1988) 

      
c
An index of the amount of green and senescent vegetation 
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Chen (1999) found that Landsat Band 3 and Band 4 were related to perennial saltbrush 

cover, R
2 

= 0.20 and 0.49 (p < 0.01), respectively. Solaimani et al. (2011) test the 

correlation between numerous vegetation indices and various land cover classes of a 

rangeland area and found that the VNIR index had the strongest correlation to shrub 

cover (r = 0.38, p < 0.01).  Ramsey et al. (2004) found a strong correlation between 

percent cover of tree, shrub, and herbaceous classes and NDVI calculated from Landsat 7 

ETM+ data. Marsett et al. (2006) found that using SATVI calculated from Landsat 5 TM 

to estimate total herbaceous cover was more robust than just using NDVI.  Sivanpillai et 

al. (2009) successfully used a single Landsat 5 TM image to predict ordinal sagebrush 

categories based on percent cover. Seyfried et al. (2001c) achieved 85% classification of 

various sagebrush steppe communities using a single Landsat 5 TM image. Chen and 

Gillieson (2009) calculated many vegetation indices using Landsat 5 TM information and 

found a wide range of relationships (R
2
 = 0.01 – 0.63) between some of them and field-

measured total cover of a semi-arid rangeland in Australia. 

 Using single or multi-date images that amplify the spectral differences between 

vegetation types may increase classification accuracies by taking advantage of vegetation 

phenological cycles of growth, flowering, senescence, and dormancy (Campbell 2007; 

Duncan et al. 1993). Sohn and Qi (2005) chose a single Landsat 7 ETM+ image that 

maximized the differences between various biotic communities of interest to create a 

classification map with an overall accuracy of 85%.  Singh and Glenn (2009) found that 

using a multi-temporal Landsat 7 ETM+ data analysis approach produced a 

presence/absence map of cheatgrass distribution with higher accuracy than using a single-

date image, Kappa = 0.44 and 0.09, respectively. Knick et al. (1997) used the NDVI of 
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multi-date Landsat 5 TM images to correctly identify grassland and shrubland classes 

with 80% accuracy, but when they tried to classify grasses and shrubs at a species level, 

the accuracy decreased to nearly 50%. Kuemmerle et al. (2006) used multidate Landsat 5 

TM images and spectral mixture analysis to derive woody cover (R
2
 = 0.76-0.91) and 

herbaceous cover (R
2
 = 0.52-0.76) of a Mediterranean rangeland. Clark et al. (2001) 

found that the date of Landsat 5 TM imagery acquisition significantly affected the overall 

user‟s accuracy of their plant community classification map.  Munyati and Makgale 

(2009) successfully mapped and quantified rangeland degradation in South Africa using 

multi-temporal Landsat 5 TM. Lewis (1998) used multi-date Landsat 5 TM to map 

various vegetation communities of an Australian research station; a comparison of image 

and field-based classification maps produced a Kappa of 0.3 and a significant 𝒳2 (149, 64 

df).  This previous work indicates that Landsat imagery is well suited for percent cover 

estimates.   

Spectral Mixture Analysis 

Pixels in Landsat imagery are 30 x 30 m in dimension.  It is, therefore, common for most 

pixels to be composed of more than one type of surface material and not be spectrally 

pure.  Linear spectral mixture analysis is a technique commonly used to estimate the sub-

pixel abundance of multiple cover types (known as endmembers) in each pixel (Adams et 

al. 1986; Small 2004; Tompkins et al. 1997; van der Meer 1995).   Mixture tuned 

matched filtering (MTMF) is a spectral mixture analysis technique that employs matched 

filtering for sub-pixel target detection and mixture tuning for false alarm rejection 

(Boardman 1998; Mitchell and Glenn 2009a).  One advantage of matched filtering over 

traditional linear spectral unmixing (LSU) is that it partially unmixes a pixel by 
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maximizing the response and estimating the abundance of a user-defined target 

endmember(s) while suppressing the response of the unknown background materials 

(Mundt et al. 2006; Sugumaran et al. 2008). Also, it is not necessary to use spectrally 

pure endmembers to successfully train matched filtering for abundance estimation; mean 

target endmembers may be used (Glenn et al. 2005; Mitchell and Glenn 2009b; Sankey et 

al. 2010).   

 The first step of MTMF analysis is to apply a minimum noise (MNF) transform to 

reduce spectral redundancy and decorrelate the image‟s apparent reflectance data by 

segregating noise. This results in a reduced number of bands containing the most 

meaningful spectral information for target detection (Glenn et al. 2005; Meusburger et al 

2010; Mitchell and Glenn 2009a). Two new datasets are generated when MTMF is 

applied to the MNF transformed data: (1) a matched filtering (MF) band and (2) an 

infeasibility band (Mitchell and Glenn 2009b; Sankey et al 2010).  Pixels with a MF 

score of zero would be mostly comprised of background noise while a pixel with a score 

of one would have 100% abundance of the target endmember.  Pixels with low 

infeasibility values have a spectra that matches the target endmember well, while pixels 

with high infeasibility values are more likely to be false positives (Mitchell and Glenn 

2009b; Sankey et al. 2010; Sugumaran et al. 2008).  Thus, pixels with MF scores near 

one with low infeasibility values are correctly identified as the target endmember of 

interest.  

 MTMF analyses have been performed on multispectral and hyperspectral data in 

many different ecosystems for classification of single or multiple land cover types. 

Jensen et al. (2006) achieved 59.09 – 66.38% (Kappa 42.55-50.17%) classification 
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accuracy of agricultural crop types in South Africa using the MTMF algorithm to classify 

Landsat and SPOT images.  Meusburger et al. (2010) compared field-measured fractional 

vegetation cover (FVC) of a study area in the Central Swiss Alps with QuickBird-derived 

NDVI, LSU, and MTMF FVC values and found MTMF (R
2
 = 0.709) was superior to 

NDVI (R
2
 = 0.64) but not to LSU (R

2
 = 0.851). Sankey et al. (2010) achieved 68% 

overall accuracy for the classification of juniper presence and absence using Landsat MF 

scores but did not find a significant correlation between MF scores and field juniper 

cover estimates (p = 0.410).  Andrew et al. (2008) employed an MTMF-decision tree 

approach to detect perennial pepperwood (Lepidium latifolium) and found a strong 

relationship between the MF score and percent cover of Lepidium (R
2
 = 0.663) using 

HyMap data.  Dehaan et al. (2007) created a blackberry distribution map in part of the 

Kosciuszko National Park, Australia, using the MTMF method and a restricted spectral 

range of HyMap imagery (visible and near-infrared only) with an overall accuracy of 

92% (Kappa 71.0%).  Using HyMap data, Mitchell and Glenn (2009a) found a good 

relationship between MF scores and leafy spurge (Euphorbia esula L.) cover (R
2
 = 0.30 – 

0.64), although MF estimates consistently underestimated true cover estimates, at two 

study areas in southeastern Idaho.  Williams and Hunt (2002) used MTMF to estimate the 

abundance of leafy spurge in northeastern Wyoming using AVIRIS data and found a 

strong relationship (R
2
 = 0.690) with field estimates.  Finley and Glenn (2010) detected 

strong water repellency presence/absence of post-fire soils in southern Idaho with 65% 

accuracy using MTMF analysis of HyMap data while Lewis et al. (2008) only achieved 

50% accuracy using ash MF scores of Probe I hyperspectral imagery of a wildfire site in 

Colorado. Robichaud et al. (2007) used the same Probe I imagery to investigate the 
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correlation between MF scores and ash, soil, scorched vegetation, and green vegetation 

cover types and found the following relationships, R
2 

= 0.42, 0.22, 0.21, and 0.48, 

respectively.  Hatala et al. (2010) classified whitebark pine crown stress and mortality 

with 82-95% producer‟s accuracy and 94-97% user‟s accuracy for 3 study areas within 

the Greater Yellowstone Ecosystem using MTMF analysis of HyMap imagery.  Much of 

the research presented here was performed using hyperspectral and/or high spectral 

resolution imagery.  Fewer examples of the utility of MTMF for the classification or 

abundance estimating of target endmembers are found for moderate spatial and spectral 

imagery.  

LiDAR and multispectral imagery fusion 

A more complete understanding of an area of interest can be obtained by fusing images 

of varying spectral, spatial, or temporal resolutions and dimensions (Pohl and van 

Genderen 1998).  Fusing LiDAR data with 2-D spectral imagery adds another dimension 

by providing information not only in the X and Y plane but also in the Z plane.  The 

following definition of data fusion was adopted in 1998: “data fusion is a formal 

framework in which what are expressed means and tools for the alliance of data 

originating from different sources.  It aims at obtaining information of greater quality; the 

exact definition of „greater quality‟ will depend upon the application” (Wald 1999).    

 Many LiDAR and multispectral imagery fusion studies have been performed with 

encouraging results involving many different ecosystems and ecological questions.   

Kempeneers et al. (2009) increased vegetation classification accuracy of a coastal dune 

belt from 55%, using just a 0.3 m resolution multispectral digital camera image, to 71% 

using a fusion with LiDAR.  Riano et al. (2007) determined that it was difficult to discern 
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shrub fire fuel types < 0.6 m in height without the aid of a 0.5 m resolution color infrared 

ortho-image. Kaheil and Creed (2009) used a fusion of LiDAR, radar, and 30 m 

resolution Landsat TM to create a wetland classification map with less than 2% 

misclassification. Maxa and Bolstadt (2009) created a cover type classification map of a 

north-central Wisconsin wetland area with greater overall accuracy using a LiDAR and 1 

m resolution IKONOS data fusion than a previous classification based solely on aerial 

photographs (74.5% and 56% accuracies, respectively).  Geerling et al. (2009) mapped 

river floodplain ecotypes fusing LiDAR and 2 m resolution Compact Airborne Spectral 

Imager (CASI) data and increased overall accuracy by 8-15%. Mutlu et al. (2008) created 

a more accurate forest fire fuels model using a fusion of LiDAR-derived and QuickBird-

derived variables (90.10% accuracy) than using Quckbird alone (76.52% accuracy). Hyde 

et al. (2006) compared many different types of remote sensing imagery for mapping 

forest structure for wildlife habitat analysis and found that a fusion of Landsat ETM+ and 

waveform-LiDAR outperformed any other single sensor or a fusion of LiDAR and 

QuickBird or a fusion of LiDAR and radar.   

 Only a few studies have integrated LiDAR data and optical imagery for rangeland 

vegetation classification (Bork and Su 2007; Mundt et al. 2006; Sankey et al. 2010).  

Bork and Su (2007) found that LiDAR-derived vegetation height was underestimated 

which led to misclassification of shrublands into grasslands. The inclusion of 

multispectral digital images resulted in a classification that had more than 20% greater 

accuracy than any of the previous single source classifications of their study area. Mundt 

et al. (2006) successfully increased sagebrush presence/absence detection accuracy by 

12% by fusing hyperspectral imagery MTMF with LiDAR roughness values.  Sankey et 
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al. (2010) classified western juniper presence/absence in a semi-arid rangeland most 

accurately using a fusion of Landsat 5 TM and LiDAR versus using Landsat 5 TM 

imagery alone (83% and 68% overall accuracies, respectively).  Most of the previous 

studies reported here utilized the fusion of LiDAR-derived canopy cover and other 

spectral information to classify various land cover types, but did not investigate how 

canopy cover estimation might be improved via fusion.  

Management Applications 

It was not until nearly the turn of the 20
th

 century that natural resources such as timber, 

grass, and wildlife were viewed as anything but unlimited commodities and management 

practices began (Knight and Bates 1995). A tremendous amount of data is needed in 

order to properly manage our natural resources. How these data are gathered, organized, 

analyzed and interpreted will influence how management decisions are made (Osundwa 

2001). Advances in technology such as remote sensing and Geographic Information 

Systems (GIS) have helped make the gathering and management of large datasets 

possible.   

 The use of remote sensing technology such as aerial imagery, satellite imagery, radar, 

and LiDAR began in the 1930‟s and GIS applications in the late 1980‟s for the rapid 

assessment of natural resources such as rangelands (Tueller 1989). These technologies 

have been used for potential vegetation mapping, land cover classification, range 

condition/productivity assessment, noxious and invasive plant detection, livestock 

grazing effect assessment, fire severity estimation, guidance for management for wildlife 

habitat, and measuring land surface features such as vegetation and topography (e.g. 

Booth and Tueller 2003; Bork and Su 2007; Hunt et al. 2003, Jensen et al. 2001, Mitchell 
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and Glenn 2009a, b; Noson et al. 2006; Sankey, T. et al. 2009, Singh and Glenn 2009; 

Tueller 1989; Wang and Glenn 2009; Washington-Allen et al. 2006).  Ecologists have 

found that the presence of many species, and the overall richness and diversity of wildlife 

of an area, is dependent on specific vegetation metrics such as height and canopy cover, 

which LiDAR data could provide (Lefsky 2002).  Remote sensing and GIS are powerful 

complementary tools for rangeland analysis and management. 
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Chapter 2: Methods 

Study Area 

The study areas of this research were located in the Reynolds Creek Experimental 

Watershed (RCEW).  The RCEW was added to the United States Department of 

Agriculture, Agriculture Research Service watershed program in 1960 (Marks 2001). The 

239 km
2
 watershed is located on the northern edge of the Owyhee Mountains of 

southwestern Idaho, approximately 80 km southwest of Boise (Figure 1, Slaughter et al. 

2001). Elevation in the RCEW ranges from 1101 m to 2241m (Slaughter et al. 2001).  

The central valley floor of the watershed is surrounded by steeply rising hills that either 

fade to rolling hills or to rugged cliffs (Stephenson 1977). Soils vary from shallow and 

desertic at lower elevations to deep and moist at the higher elevations dominated by 

forests and are derived from granitic and volcanic rocks and lake sediments (Slaughter et 

al. 2001).  The climate varies from semi-arid in the north to temperate in the south where 

the elevation is higher. Mean annual temperature ranges from 4.7 to 8.9° C (Hanson et al. 

2000) and annual precipitation varies from ~230 mm in lower elevations to >1100 mm in 

higher elevations, primarily due to snowfall (Slaughter et al. 2001).    

 The plant communities throughout the watershed are quite diverse due to the 

elevation, soils, and climate variation.  In the lower elevations, the plant communities are 

typical of the Great Basin Desert while forested alpine communities occur at the higher 

elevations.  The range of elevation and complex topography has created a mosaic of plant 

communities over the watershed. Wyoming big sagebrush (Artemesia tridentata Nutt. 

ssp. wyomingensis), Low sagebrush (Artemisia arbuscula Nutt.), and antelope bitterbrush 

(Purshia tridentata [Pursh] DC.) dominate the vegetative landscape in lower and mid- 
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elevations (< 1,600 m; Clark et al. 2001).  Other notable species present include: Utah 

snowberry (Symphoricarpos oreophilus var utahensis (Rydb.) A. Nels.), Utah 

serviceberry (Amelanchier utahensis Koehne), rock spirea (Holodiscus dumosus [Nutt. ex 

Hook] Heller), Oregon grape (Mahonia repens (Lindl.) Don), rubber rabbitbrush 

(Ericameria nauseosa (Pallus ex Pursh) Nesom & Baird), yellow rabbitbrush 

(Chrysothamnus viscidiflorus [Hook.] Nutt.), Woods rose (Rosa woodsii Lindl.), curl-leaf 

mountain mahogany (Cercocarpus ledifolius Nutt.), western juniper (Juniperus 

occidentalis Hook.), native bunchgrasses and forbs, and some cheatgrass (Bromus 

tectorum L.) (Spaeth 2002; Stephenson 1977). At higher elevations (> 1600 m), mountain 

big sagebrush (Artemisia tridentate Nutt. ssp. vaseyanna (Rydb.) Beetle), quaking aspen 

(Populus tremuloides Michx.), and mixed conifer are most predominant (Clark et al. 

2001). More detailed information on watershed geography, vegetation, soils, hydrology, 

and weather at the watershed can be obtained from previously published references 

(Hanson et al. 2000; Hanson 2001; Hanson et al. 2001; Marks et al. 2001; Pierson et al. 

2001; Seyfried et al. 2001a, b, c, and d; Spaeth 2001; Stephenson 1977).  

 The three study areas within the RCEW were intentionally chosen in areas with 

varying dominant species and topography (Appendix 1). Study areas 1 and 3 are ~ 3 km
2 

and study area 2 is ~ 4 km
2
.  Based upon field observations, the majority of study area 1 

is comprised of big sagebrush species and bitterbrush with taller willows and serviceberry 

in the wetter drainages. Study area 2 is mostly comprised of sparse low sagebrush and 

grey rabbitbrush with pockets of big sagebrush species and snowberry in the moister 

drainages.  Study area 3 has the greatest species diversity and demonstrates juniper 

encroachment.  Appendix 1 displays figures depicting the slope and aspect throughout 
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each of the three study areas. The extent and location of the study areas (Figure 1) were 

also determined based on  accessibility, landownership, and a RCEW vegetation 

classification from 2001(ftp.nwrc.ars.usda.gov). 

 
 

Figure 1. The three study areas within the USDA-ARS Reynolds Creek Experimental 

Watershed, Idaho. 

 

Field Data Collection  

Shrub Height and Cover Measurements 

Field data were collected for shrub height and cover analysis during May and June 2010.  

A total of 100 random points were generated for field plots using ET GeoWizard 9.9 

1 

3 

2 
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(www.ian-ko.com) in ESRI® ArcMap
TM

 9.3.1 software (ArcMap; ESRI Inc, 1999-2009). 

The points were proportionately distributed among the three study areas, 30 points in 

each of the study areas 1 and 3 and 40 points in study area 2. A Trimble GeoXH receiver 

(sub-meter post-processing accuracy) was used to navigate to the random points on the 

ground. A 30 x 30 m field plot, consistent with Landsat 5 TM pixel dimensions, was 

centered on each of the 100 random points. Within each plot were five 3 x 3 m
 
quadrats 

(Figure 2), where the dominant shrub species and maximum shrub height, including 

reproductive stems, were recorded (totaling 500 quadrats). The configuration of the 5 

quadrats within the plot was the same for all 100 field plots. To estimate percent shrub 

and total canopy cover for the entire 30 x 30 m plot, shrub and tree presence/absence was 

recorded at 100 points at every three meters along the transect lines in 100 plots (Figure 

2).  

 

Figure 2. Example of a field plot. Within each 30 x 30m plot, five 3 x 3 m quadrats 

(shaded cells) were established to measure shrub height and dominant shrub species.  A 

total of 100 points (black dots) along the transect lines (black arrows) were used to 

estimate shrub cover.  
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 The number of points was also increased to 300 by sampling every 1 m along the line 

transects in 20 of the field plots. The shrub cover estimates derived from these points 

were compared to the estimate derived from 100 points to determine if a greater number 

of detection points were needed in each plot to adequately estimate shrub canopy cover.  

Simple linear regression suggested there was strong agreement (R
2 

= 0.9557, p < 0.01) 

between the cover estimates calculated using 100 versus 300 detection points (for n = 20 

plots) indicating that 100 points were equally sufficient.  

Shrub Height and Age Measurements 

Shrub age was estimated to correlate shrub age with height to determine the potential 

differences in shrub heights between the time of LiDAR data acquisition (November 

2007) and field data collection (June-July 2010).  A total of 100 shrub stems were 

destructively sampled (between 28 June and 2 July 2010) for each species of antelope 

bitterbrush, big sagebrush species, and low sagebrush, while 50 stems were sampled for 

Utah snowberry and Utah serviceberry (total of 400 samples).  Samples were taken from 

shrubs of various heights at randomly selected locations within the study areas, but on 

relatively flat ground (locally), at least 3 m apart. Each sampled shrub was mapped with a 

Trimble GeoXH GPS receiver and its height and species were recorded.  A cross-section 

disk from the largest stem of the shrub was taken at ground height.  The cross-section 

disks were then processed and dated using standard dendrochronological methods (Stokes 

and Smiley, 1968). The ground-facing side of each cross-section disk was sanded to show 

adequate detail of ring structure.  The rings of the sanded disk were then manually 

counted under an OM99 6.5X – 45X stereo zoom microscope with X10 magnification 
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lenses.  Shrub age was estimated by counting the number of rings between the bark and 

the pith and subtracting this from 2010 (the year of sample collection).   

LiDAR Data Acquisition and Analysis  

The LiDAR data were collected in November of 2007 across the RCEW by Watershed 

Sciences, Inc (Portland, OR).  A Leica ALS50 Phase II laser discrete return system 

mounted in a Cessna Caravan 208B was used to conduct the LiDAR survey. The sensor 

scan angle was ± 14° from nadir with an emitted pulse rate of ≥ 4 points per square 

meter.  The sensor system allowed up to four returns per pulse.  The vendor-processed 

data was output into LAS v.1.1 files where each point maintained the corresponding scan 

angle, return number, intensity, and x, y, z information.  Summary statistics from the 

vendor show the LiDAR dataset has an average point density of 5.6 points/m
2 

and a 

vertical accuracy of 0.034 m. Glenn et al. (2011) independently assessed these accuracies 

and reported a vertical accuracy of 0.10 m and horizontal accuracy of 0.30 m. 

 The LiDAR point cloud data were subset to the three study areas and processed using 

the BCAL LiDAR tools developed by the Idaho State University Boise Center Aerospace 

Laboratory (http://bcal.geology.isu.edu/Envitools.shtml) in Environment for Visualizing 

Images (ENVI) version 4.7 (ITT Visual Information Solutions, 2008, Boulder, CO). The 

LiDAR point cloud data were first height-filtered, using 7m canopy spacing and a natural 

neighbor interpolation, to separate vegetation and ground returns.  Maximum shrub 

height (referred to as height hereinafter) was then estimated and rasterized into 3 m 

resolution pixels (.tif format) for the height estimation analysis. Using ArcMap spatial 

analysis tools, the LiDAR-derived height values for each 3x3 m field quadrat were 

extracted for statistical analysis.  



25 
 

 The minimum allowable raster grid size was calculated (S) using equation (1): 

    √     (1) 

where A is the covered area and n is the number of LiDAR points, thus the number of 

grids is roughly equal to the number of lidar points in the covered area (Liu 2008).  The 

minimum allowable grid size determined for study areas 1, 2, and 3 were 0.44, 0.36, and 

0.45 m, respectively. For the LiDAR cover estimation analysis, the raw LiDAR height 

data were rasterized and cover analysis results were compared at 3 different resolutions: 

0.5 m, 1 m, and 3 m. 

Statistical Analysis of LiDAR Height Estimation 

Linear regression analysis assumes a linear relationship between datasets and that 

datasets are normally distributed.  Histograms of the LiDAR-derived and field-measured 

height datasets revealed that both datasets had non-Gaussian distributions and were, 

therefore, transformed using a logarithmic function.  First, the relationship between the 

LiDAR-derived and field-measured shrub heights was examined using a simple linear 

regression across all three study areas and for each study area separately. A multiple 

linear regression was also developed to evaluate the effect of shrub species on the 

relationship between LiDAR-derived and field-measured heights by adding shrub species 

as indicator variables.   

 Next, both LiDAR-derived and field-measured heights were compared among the six 

different shrub species using an analysis of variance (ANOVA) with all pairs compared 

to determine if the LiDAR-predicted and field-measured heights significantly varied 
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among species. This analysis indicated that shrub heights did not vary significantly 

among all six species in both LiDAR-predicted and field-measured heights.  

 Therefore, in order to create a categorical LiDAR vegetation height map, shrub 

heights were classified into four height categories rather than species-based categories: 

low, moderate, high, and tree (Table 3 and Figure 6).  The intermediate value between the 

means of each vegetation height category was used as the threshold between the different 

categories. For example, the mean height of the low vegetation category was 37 cm and 

the mean of the moderate vegetation category was 103 cm. The intermediate value of 70 

cm was, therefore, used as the threshold between the two categories (field division values 

are rounded up to the nearest _5 or _0 value because field height data were measured to 

the nearest 5 cm). The relationship between the LiDAR-derived and field-measured shrub 

heights was examined for each height category using a simple linear regression.  All 

regressions were conducted using LiDAR-derived heights as the predictor variable and 

field-measured heights as the response variable.  All statistical analyses were performed 

using PASW® statistics 18.0 (SPSS Inc., Chicago, IL)
1
.  

  The mean root square error (RMSE) and mean signed error (MSE) were calculated 

across all three study areas, for each study area, and for each height class to assess the 

accuracy of LiDAR-derived shrub height estimation using equations (2) and (3), 

respectively, 

  

       √
∑                    

  
 

 
  (2) 

 

                                                           
1
 All statistical analyses from this point forward were performed using PASW ® statistics 18.0 unless 

otherwise noted. 
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∑          

 
           

 
  (3) 

 

where 𝑥LiDAR, i  is LiDAR-derived height value, 𝑥Field, i  is field-derived height value for the 

i-th field quadrat and n is the total number of quadrats.  

Statistical Analysis of Shrub Height and Age  

The relationship between shrub height and age for each species was examined using 

linear and non-linear regression models to infer potential differences in shrub heights 

between the time of LiDAR data acquisition and field data collection.  In all regression 

models, shrub height (by species) was the predictor variable, and shrub age was the 

response variable. 

LiDAR Categorical Height Map Classification Accuracy Assessment 

Discriminant analysis was used to: (1) assess the accuracy of the LiDAR height category 

classification of each field quadrat using leave-one-out cross validation and (2) generate 

discriminant functions for each LiDAR height category to predict category membership 

of all pixels within the study areas that were not associated with the field quadrats (these 

would be considered new observations).  Predictive linear discriminant analysis 

(Appendix 2) was performed using Minitab® 16.1.0 (Minitab Inc., State College, PA).  

In order to meet the assumptions of discriminant analysis (Appendix 2), log-transformed 

LiDAR data was used and prior probability of category membership was calculated and 

used in category membership prediction. For cross validation, field-measured height 

classes were used as the grouping variable (training dataset) and the LiDAR-derived 

height values were used as the predictor variable. The overall accuracy, user‟s and 
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producer‟s accuracies, the errors of omission and commission, and kappa statistic were 

calculated from associated classification error matrices (Campbell 2007; Jensen 2005).   

 A discriminant analysis classification summary table that listed each unclassified 

(non-training) pixel within the study areas, what vegetation category it was classified as, 

and the probability that it was classified correctly was generated in Minitab.  This data 

were joined to a 3-m resolution raster layer of all three study areas‟ LiDAR height values 

using ArcMap.  Two new raster layers were created, one displaying discriminant 

function-derived height category classification and one displaying the probability that this 

classification is correct.  The classification summary was generated using prior 

probability, log-transformed LiDAR data.  To create comprehensive vegetation maps, the 

tree category was included.  

LiDAR-derived Canopy Cover Estimation and Map 

For each raster resolution (0.5 m, 1 m,  and 3 m), each pixel within a 30 x 30 m plot was 

classified as ground (which may include herbaceous species), shrub, or tree. LiDAR-

derived total canopy cover estimates were derived by first counting the number of 

LiDAR pixels classified as shrub and tree within the 30 x 30m plot and then dividing 

them by the total number of pixels.  LiDAR-derived shrub canopy cover was estimated 

by dividing the number of shrub pixels by the total number of pixels.  Initially, all LiDAR 

pixels across all three study areas with a height value less than 22 cm, the lower 95% 

confidence interval of the low height category, were classified as ground. The influence 

of this ground/vegetation threshold on the relationship between LiDAR-derived and field-

measured canopy cover estimates was explored by incrementally increasing or decreasing 
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the threshold value to determine the optimum threshold value(s) to produce the strongest 

relationships and the lowest error.  

 A 30 m resolution map of the LiDAR-predicted shrub canopy cover for each study 

area was generated using ESRI ArcMap 9.3 software and the following steps: 1) Each 

pixel of the 0.5 m LiDAR maximum vegetation height raster was reclassified as either 0 

(ground or tree) or 1 (shrub) based on its LiDAR height value.  The ground/vegetation 

thresholds that optimized the linear regression results at each study area were used.   2) 

The Spatial Analyst Aggregate tool was used to create a 30 m pixel raster, each pixel 

contained the sum of all of the 0.5 m shrub pixels within each 30 x 30 m block for the 

entirety of each study area.  3) Map algebra was used to divide the resulting sum value 

within each 30 m pixel by 3600 (the total number of pixels within each 30 x 30 m block) 

to calculate the percent shrub cover for each 30 m pixel.  4) The coefficients of the 

regression model that resulted in the highest R
2
 value between LiDAR-derived and field-

measured shrub canopy cover were applied to the new 30 m resolution LiDAR-derived 

raster.  

Statistical Analysis of LiDAR-derived Canopy Cover Estimation 

Histograms of the field-measured and LiDAR-derived canopy cover estimates indicated 

that both datasets had fairly normal distributions and no transformation was necessary. 

First, the relationships between the LiDAR-derived and field-measured shrub and total 

canopy cover estimates were examined across the three study areas and for each study 

area separately.  This was performed for each raster resolution: 0.5 m, 1 m, and 3 m. 

Independent t-tests were performed to determine if there were significant differences 

between 1) the means of the LiDAR-derived and field-derived canopy cover estimates 
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and 2) the means of LiDAR-derived canopy cover estimates using the different pixel 

sizes. Next, the relationship between the ground/vegetation threshold optimized LiDAR 

canopy cover estimates and field-measured canopy cover estimates were examined using 

simple linear regression across all three study areas and for each study area separately.  

The field-measured canopy cover estimate means were compared to optimized LiDAR-

derived canopy cover estimate means via independent t-tests using Minitab to determine 

if they were significantly different.   Finally, the RMSE and MSE were calculated using 

equations (2) and (3) across all three study areas and for each study area separately to 

assess the accuracy of LiDAR-derived shrub and total canopy cover estimation. LiDAR-

derived canopy cover estimates were the predictor variables and field-measured canopy 

cover estimates were the response variables for all linear regressions.   

Landsat Imagery Acquisition and Analysis 

Landsat 5 TM images acquired on 26 June and 10 October 2009 from Path 42, Row 30 

were used for classification.  All pre-processing was conducted using the Environment 

for Visualizing Images (ENVI) version 4.7 software (ITT Visual Information Solutions, 

Boulder, CO).  Prior to analysis, 1) the images were subset to include only the area that 

encompasses the RCEW, 2) the images‟ digital number data were converted to at-sensor 

spectral radiance using the equation given in Chander and Markham (2003), 3) radiance 

values were converted to reflectance values, 4) the images were atmospherically 

corrected using ENVI FLAASH and 5) the reflectance-corrected Landsat images were 

registered to an orthorectified 9 July 2008 MRLC (Multi-Resolution Land 

Characteristics) image using 50 ground control points with a final RMSE of 0.099 m, 

transformed using 1
st
 degree polynomial, and resampled using cubic convolution.    
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Vegetation Indices 

Band math was performed using ENVI software to calculate a number of vegetation 

indices and tasseled cap transformations for the June and October Landsat images.  The 

band math formulas are listed in Table 1.  

Spectral Mixture Analysis 

Mixture tuned matched filtering (MTMF) sub-pixel classification was performed for the 

June Landsat image, the October Landsat image, and a multi-date composite to estimate 

total canopy cover of each pixel within the study areas. This was accomplished using the 

ENVI 4.7 software Target Detection Wizard. Due to the lack of spectral separability, the 

shrub and tree species could not be distinguished from each other and were thus 

combined.  The endmember spectrum used for shrub and tree detection was the mean 

spectra of all the October image study plot pixels with greater than 60% total canopy 

cover (15 plots).  The results of the MTMF using the Target Detection Wizard were a 

matched filtering (MF) score band and an infeasibility value band.  These bands were 

saved as tif files and exported to ArcMap 9.3.  In ArcMap, the MF score and infeasibility 

values for each study plot were extracted.   

Statistical Analysis of Landsat-derived Canopy Cover Estimation 

Vegetation Indices 

To determine the statistically significant Landsat 5 TM bands and/or vegetation indices 

and transformations for estimating canopy cover, simple linear regressions were 

performed to examine the relationship between field-measured total canopy cover and 

each June and October Landsat band, vegetation index and tasseled cap transformation 

(Table 1).  Independent t-tests were performed to compare the means of each band, index, 
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and transformation and the field-measured total canopy cover estimate means to 

determine if they were significantly different.   

Spectral Mixture Analysis 

First, the MTMF bands were examined.  The relationship between each band (MF and 

infeasibility) and field-measured total canopy cover was assessed using simple linear 

regression; this was done using June, October, and a multi-date composite Landsat 

images.  Then, following the approach of Sankey et al. (2010), thresholds were set for the 

infeasibility values and MF scores to maximize their potential to estimate total canopy 

cover.  Quadratic regression equations were fitted using the infeasibility values as the 

response variables and the MF scores as the predictor variables of all the pixels within the 

three study areas.  Pixels with a minimum MF score of 0 and a maximum MF score of 1-

2 and an infeasibility value that fell below 1-2 standard deviations of the polynomial 

regression curve were tested as appropriate thresholds for the estimation of percent total 

canopy cover.    

Statistical Analysis of LiDAR and Landsat Data Fusion Canopy Cover Estimation 

To determine the significant Landsat bands, vegetation indices, tasseled cap 

transformations and MTMF classification information for fusion with LiDAR-derived 

total canopy cover, a series of stepwise linear regressions (in alpha = 0.01, out alpha = 

0.05) were performed.  The first regression included each Landsat band as the predictor 

variables and the field-measured total canopy cover as the response variable. The second 

regression included all of the vegetation indices and the tasseled cap transformations as 

the predictor variables.  The third regression included the MF scores, infeasibility values, 

and the MTMF-derived total canopy cover as predictor variables.  The fourth regression 
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included only the significant predictor variables from the first, second, and third 

regressions.  The final regression fused the Landsat data with the LiDAR data by 

including only the significant predictor variables from the fourth regression and the 

optimized LiDAR-derived total canopy cover estimates as predictor variables and field-

measured total canopy cover as the response variable. 
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Chapter 3: Results 

Statistical Analysis of LiDAR Height Estimation 

The LiDAR-derived maximum vegetation heights were significantly correlated with the 

field-measured shrub heights (Table 2). The coefficients of determination (adj. R
2
) were 

similar for the transformed and untransformed data, at 0.748 and 0.784, respectively.  

Thus, for ease of interpretation, results using the untransformed height data are presented. 

For the entire study region, the relationship between LiDAR-derived and field-measured 

height was weakened when the tree quadrats were not included in the analysis (R
2 

= 

0.695, p < 0.01, Figure 3). Based on the simple linear regression model, true shrub height 

in the field at the study region level could be predicted using the equation field height = 

1.0035(LiDAR height) + 32.795.    

 When a separate linear regression was performed for each study area within the study 

region, the resultant R
2
 for each study area were markedly different (Table 2).  The 

LiDAR-derived shrub heights in study area 3 (R
2
 = 0.770, p < 0.01) had the strongest 

correlation with the field-measured heights, followed by study area 2 (R
2
 = 0.554, p < 

0.01), and then study area 1 (R
2
 = 0.460, p < 0.01).  The 95% confidence interval values 

around the constants of each study area do not overlap, study area 1: 57.023 – 78.586; 

study area 2: 11.478 – 23.790; and study area 3: 28.196 – 44.536 (overlap also did not 

occur when trees were included in the regression analysis). Regression results were 

generally better when quadrats with trees were included in the regression models (Table 

2). The multiple linear regression using shrub species as indicator variables yielded the 

same R
2 

of 0.862 (p < 0.01) when trees were and were not included.  When trees were not 

included as an indicator variable, all shrub species were significant (p < 0.01, Figure 4) as 



35 
 

indicator variables.  When trees were included as an indicator variable, snowberry 

became not statistically significant (p = 0.617) and big sagebrush was excluded from the 

model.   

Table 2. Results of simple linear regressions performed using quadrats from the entire 

study region, from each study area, and from each height category to examine the 

relationship between LiDAR-derived and field-measured maximum vegetation height.  

 

  Quadrats Included Model
a
 Adj. R

2b
 N

c
 

Trees Not 

Included All Study Areas y = 32.795 + 1.003x 0.695 474 

 

Study Area 1 y = 67.805 + 0.672x 0.460 146 

 

Study Area 2 y = 17.634 + 1.237x 0.554 196 

 

Study Area 3 y = 36.366 + 0.982x 0.770 132 

     Trees Included All Study Areas y = 36.596 + 0.951x 0.784 493 

 

Study Area 1 y = 67.807 + 0.678x 0.457 147 

 

Study Area 2 y = 21.020 + 1.178x 0.685 203 

 

Study Area 3 y = 42.288 + 0.896x 0.890 143 

     Height Category Low y = 20.059 + 0.708x 0.292 150 

 

Moderate y = 60.811 + 0.664x 0.507 201 

 

High y = 75.295 + 0.706x 0.549 121 

  Tree y = 140.780 + 0.634x 0.612 19 

a
y: LiDAR-derived vegetation height, x: field-measured vegetation height (cm) 

 b
p < 0.01 for all models 

   c
N: Number of quadrats. 
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Figure 3.  Goodness of fit between field-measured and LiDAR- derived maximum shrub 

heights across all three study areas in the Reynolds Creek Experimental Watershed study 

region, Idaho. 

 

 

Figure 4.  Goodness of fit between field-measured and LiDAR-derived maximum shrub 

height, with shrub species as indicator variables, across all three study areas in the 

Reynolds Creek Experimental Watershed study region, Idaho. 

y = 32.795 + 1.0035x 

  Adj. R
2
 = 0.6955 

Y = 133.06 + 0.66*X – 72.44*Big sagebrush – 

54.21*Bitterbrush – 112.79*Low sagebrush – 

48.55*Serviceberry – 69.37*Snowberry 

Adj. R2 = 0.86 
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 The ANOVA results indicated that not all shrub species could be differentiated from 

each other based on field-measured (F(6, 486) = 194.181, p < 0.01) or LiDAR-derived 

(F(6, 486) = 112.833, p < 0.01) height alone (Figure 5). Tukey‟s post hoc comparisons of 

the field-measured and LiDAR-derived heights by species indicated that there were no 

significant differences in height between big sagebrush and Utah snowberry (p = 1.000 

and p = 0.998), between antelope bitterbrush and Utah serviceberry (p = 0.829 and p = 

0.409), or between low sagebrush and rabbitbrush (p = 0.497 and p = 0.899).    All other 

species mean heights were significantly different.  Figure 5 depicts the mean height and 

95% confidence intervals around the mean for each shrub species and which species can 

and cannot be differentiated from each other based on their mean heights.   

 

Figure 5. Field-derived vegetation means and 95% confidence intervals (CI) for each 

shrub species encountered during data collection in the Reynolds Creek Experimental 

Watershed, Idaho (June and July 2010). Species with the same letter (a, b, c, or d) do not 

have statistically significant different mean heights. 
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 To construct the categorical height map, the shrub species were classified into four 

height categories (Table 3 and Figure 6).  The final field height ranges for each height 

category were – Low: 35-65 cm, Moderate: 70-115 cm, High: 120-205 cm, and Tree: 

210+ cm. The corresponding LiDAR height ranges for each vegetation height were – 

Low: 22-43 cm, Moderate: 44-77 cm, High: 78-156, and Tree: 157+ cm.  The results of 

the simple linear regression between LiDAR-derived and field-measured height by height 

category revealed that the relationship was strongest for the tree category, R
2
 = 0.612, 

and weakest for the low category, R
2
 = 0.292 (Table 2).
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Table 3.  Mean values (min-max) of the field-measured (2010) and Lidar-derived (2007) vegetation heights within each vegetation 

height category based on data collected in the Reynolds Creek Experimental Watershed, Idaho.  

 

Vegetation Type 
# of 

Quadrats 

Vegetation Height Category   

Low Moderate High Tree 

  
 Field(cm) LiDAR(cm) Field LiDAR Field LiDAR Field LiDAR 

Low Sagebrush 129 35              
(10-70) 

23              
(7-66) 

     

  

Rabbitbrush 23 46              
(15-90) 

30        
 (9-94) 

     

  

Big Sagebrush 181 

  

104          
(25-175) 

65         
 (10-176) 

   

  

Snowberry 20 

  

103            
(65-145) 

59              
(26-101) 

   

  

Bitterbrush 109 

    

135            
(45-270) 

89             
(25-241) 

 

  

Serviceberry 12 

    

186            
(40-335) 

158          
(20-235) 

 

  

Tree 19 
            

339           
(200-565) 

312           
(102-557) 
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Figure 6.  The frequency of shrub species within each vegetation height category 

determined to characterize the three study areas of the Reynolds Creek Watershed, Idaho 

(2010).   

 

 The LiDAR data typically underestimated all maximum vegetation height by ~ 33 cm 

across all three study areas, resulting in root mean square error (RMSE) of 46.67 cm 

when trees were included and an RMSE of 43.74 cm when tree quadrats were not 

included.  Estimation errors were mixed across all study areas and vegetation height 

categories (Table 4).  Study area 2 had the lowest RMSE and MSE values, followed by 

study area 3, and then study area 1.  The low height category had the smallest RMSE and 

MSE of all the height categories, 18.48 and -13.07 cm, respectively.  The tree category 

had the highest RMSE of 93.75 cm but the high height category had the highest MSE of -

47.79 cm.  
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Table 4.  Comparative statistics between LiDAR-derived and field-measured maximum 

vegetation height values.  

 

  RMSE (cm) MSE (cm) 

Trees Not Included 

  
Study Region 43.74 -33.00 

Study Area 1 53.14 -41.49 

Study Area 2 35.47 -25.33 

Study Area 3 43.35 -35.00 

   
Trees Included 

  
Study Region 46.67 -33.29 

Study Area 1 53.57 -41.87 

Study Area 2 42.72 -27.71 

Study Area 3 44.37 -32.38 

   
Height Category 

  
Low 18.48 -13.07 

Moderate 46.23 -39.17 

High 59.29 -47.79 

Tree 93.75 -40.47 

* RMSE: root mean square error, MSE: mean signed error 

 

Statistical Analysis of Shrub Height and Age 

Of the 400 shrub core samples collected, 342 were successfully dated.  The simple linear 

regression models indicated that only antelope bitterbrush and low sagebrush heights had 

a significant correlation with age (R
2
 = 0.155 and 0.147, respectively).  Additional non-

linear regression models did not indicate significant correlation for the remaining species 

and only slightly increased the coefficient of determination for antelope bitterbrush and 

low sagebrush relationships (Table 5).  
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Table 5. The coefficient of determination (adj. R
2
) calculated by performing linear and 

non-linear regression of shrub height versus shrub age.  

 

  Adj. R
2 

Model Bigsage Bitterbrush Lowsage Snowberry Serviceberry 

Linear 
0.023 

(p = 0.160) 

0.155 

(p < 0.001) 

0.147 

(p = 0.001) 

0.001 

(p = 0.825) 

0.154 

(p = 0.009) 

Logarithmic 
0.041 

(p = 0.061) 

0.209 

(p < 0.001) 

0.167 

(p < 0.001) 

0.005 

(p = 0.634) 

0.176 

(p = 0.005) 

Quadratic 
0.058 

(p = 0.080) 

0.217 

(p < 0.001) 

0.153 

(p = 0.004) 

0.058 

(p = 0.284) 

0.193 

(p = 0.014) 

Cubic  
0.068 

(p = 0.117) 

0.235 

(p < 0.001) 

0.170 

(p = 0.006) 

0.065 

(p = 0.428) 

0.218 

(p = 0.021) 

Exponential 
0.028 

(p = 0.122) 

0.154 

(p < 0.001) 

0.152 

(p = 0.001) 

0.001 

(p = 0.833) 

0.127 

(p = 0.019) 

 

 The annual height growth for each shrub species varied considerably.  If a linear 

relationship between annual shrub height growth and age could be assumed (which the 

regression models indicated could not) the expected MSE (RMSE) of shrub height per 

year (in cm) for each species are outlined in Table 6.  Serviceberry would have the most 

variable mean change in height per year (5.19 ± 46.49 cm) and low sagebrush would 

have the least variable mean change in height per year (0.20 ± 7.97 cm).    

Table 6. Comparative statistics between yearly height measurements per shrub species. 

 

Shrub Species RMSE (cm) MSE (cm) St. Dev. (cm) 

Lowsage 7.81 0.20 7.97 

Bigsage 29.70 6.29 29.51 

Bitterbrush 34.20 -2.41 34.66 

Snowberry 23.72 -7.34 23.30 

Serviceberry 44.97 5.19 46.49 
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LiDAR Categorical Height Map Classification Accuracy Assessment 

The overall accuracies and Kappa-statistics (KHAT) were very similar for untransformed 

and log-transformed LiDAR data using equal membership probability for each category, 

at 0.703(KHAT = 0.567) and 0.675(KHAT = 0.535), respectively. When prior membership 

probabilities were used, the overall accuracies were 0.685(KHAT = 0.537) and 0.699(KHAT 

= 0.562) using untransformed and log-transformed LiDAR data, respectively (Table 7a – 

7d). The calculated prior probabilities for each category were: Low shrub = 0.358, 

Moderate shrub = 0.327, High Shrub = 0.269 and Tree = 0.046.  Of the shrub height 

categories, the low category had the highest producer‟s and consumer‟s accuracies using 

both the untransformed or transformed LiDAR-derived height values.  The producer‟s 

accuracy and errors of commission of the moderate and high categories were mediocre 

and indicate that there is a reasonable amount of confusion between these two groups. 

Cross-validation was again performed with only the quadrats that included shrubs.  The 

overall accuracies were 0.706 (KHAT = 0.5514) and 0.701 (KHAT = 0.550) using 

untransformed and log-transformed LiDAR height values, respectively.   

Table 7a. Untransformed vegetation height category classification cross-validation 

results using equal probability of category membership. (PA = Producer‟s Accuracy, EO 

= Error of Omission, UA = User‟s Accuracy, EC = Error of Commission) 

 

  

Field Vegetation Height Category 

  

L
iD

A
R

 P
re

d
ic

te
d

 

C
a

te
g

o
ry

 

 

Low  Mod High Tree Total UA(%)
 

EO(%) 

Low 162 45 9 0 216 75.0 25.0 

Mod 14 90 43 3 150 60.0 40.0 

High 1 26 76 0 103 73.8 26.2 

Tree 0 1 5 20 26 76.9 23.1 

Total 177 162 133 23 495 

  PA(%) 91.5 55.6 57.1 87.0 

   

 
EC(%) 8.5 44.4 42.9 13.0 

   

   
Overall Accuracy = 0.703 

  

     
KHAT  = 0.567 
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Table 7b.  Log transformed vegetation height category classification cross-validation 

results using equal probability of category membership.   
 

  

Field Vegetation Height Category 

  

L
iD

A
R

 P
re

d
ic

te
d

 

C
a

te
g

o
ry

 

 

Low  Mod High Tree Total UA(%) EO(%) 

Low 147 27 4 0 178 82.6 17.4 

Mod 28 86 31 1 146 58.9 41.1 

High 2 48 81 2 133 60.9 39.1 

Tree 0 1 17 20 38 52.6 47.4 

Total 177 162 133 23 495 

  PA(%) 83.1 53.1 60.9 87.0 

   

 
EC(%) 16.9 46.9 39.1 13.0 

   

   
Overall Accuracy = 0.675 

  

     
KHAT  = 0.535 

   

Table 7c. Untransformed vegetation height category classification cross-validation 

results using calculated prior probability of category membership.  
 

  

Field Vegetation Height Category 

  

L
iD

A
R

 P
re

d
ic

te
d

 

C
a

te
g

o
ry

 

 

Low  Mod High Tree Total UA(%) EO(%) 

Low 166 56 14 0 236 70.3 29.7 

Mod 10 84 48 3 145 57.9 42.1 

High 1 21 71 2 95 74.7 25.3 

Tree 0 1 0 18 19 94.7 5.3 

Total 177 162 133 23 495 

  PA(%) 93.8 51.9 53.4 78.3 

   

 
EC(%) 6.2 48.1 46.6 21.7 

   

   
Overall Accuracy = 0.685 

  

     
KHAT  = 0.537 

   
 

Table 7d.  Log transformed vegetation height category classification cross-validation 

results using calculated prior probability of category membership.   
 

  

Field Vegetation Height Category 

  

L
iD

A
R

 P
re

d
ic

te
d

 

C
a

te
g

o
ry

 

 

Low  Mod High Tree Total UA(%) EO(%) 

Low 148 32 4 0 184 80.4 19.6 

Mod 28 97 45 3 173 56.1 43.9 

High 1 32 83 2 118 70.3 29.7 

Tree 0 1 1 18 20 90.0 10.0 

Total 177 162 133 23 495 

  PA(%) 83.6 59.9 62.4 78.3 

   

 
EC(%) 16.4 40.1 37.6 21.7 

   

   
Overall Accuracy = 0.699 

  
     

KHAT  = 0.562 
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 The results of the discriminant function categorical height classification and 

corresponding probability maps were created for study area 3 as an example (Figure 7a 

and 7b). Approximately 32% of the pixels in study area 3 were classified with a 70% or 

greater probability of accurate classification.  Nearly 44% of the pixels only had a 50% 

probability of accurate classification.  The average probabilities of correct classification 

for each height category were: low = 0.49, moderate = 0.41, high = 0.61, and tree = 0.98.   
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Figure 7a.  Discriminant function-derived vegetation height 

category map for study area 3 based on LiDAR-derived 

maximum vegetation height. The field height ranges for each 

height category - Low: 35-65 cm, Moderate: 70-115 cm, 

High: 120-205 cm, and Tree: 210+ cm.  The corresponding 

LiDAR height ranges – Low: 22-43 cm, Moderate: 44-77 cm, 

High: 78-156, and Tree: 157+ cm.   

 

 

Figure 7b.  Discriminant function-derived vegetation height 

classification probability of accurate classification map for 

study area 3.  
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Statistical Analysis of LiDAR-derived Canopy Cover Estimation  

Using the 3 m resolution LiDAR pixels resulted in canopy cover estimates of 100% for 

all study plots and was, therefore, deemed too coarse of a resolution for cover analysis. 

The simple linear regression of field-measured versus 0.5 m resolution LiDAR-derived 

shrub canopy cover yielded an adjusted R
2
 of 0.282 (p < 0.01; Figure 8), while the 1 m 

pixels had a slightly better relationship at R
2
 of 0.296 (p < 0.01, Table 8). Shrub canopy 

cover could be predicted using the following equation: field shrub canopy cover = 30.47 

+ 0.334 (0.5 m LiDAR) or field shrub canopy cover = 30.03 + 0.301 (1 m LiDAR). The 

relationship between LiDAR-derived and field-measured canopy cover estimates were 

slightly stronger when the pixels classified as tree were included (R
2
 = 0.313, p < 0.01; 

0.5 m resolution and R
2
 = 0.324, p < 0.01; 1 m resolution). At the study area level, the 

strongest relationship between LiDAR-derived and field-measured shrub and/or total 

canopy cover was consistently found in study area 3 (R
2
 = 0.557 – 0.768, p < 0.01), 

followed by study area 2 (R
2
 = 0.439 – 0.515, p < 0.01), and finally study area 1 (R

2
 = 

0.259 – 0.385, p < 0.01; Table 8).   

 Independent t-tests showed no significant difference between the 0.5 m and 1 m 

resolution LiDAR-derived canopy cover and field-measured canopy cover (p = 0.077 and 

p = 0.766, respectively).  An independent t-test also showed that 0.5 m LiDAR-derived 

canopy cover and 1 m LiDAR-derived canopy cover had no statistically significant 

difference (p = 0.106). Given this information, the ground/vegetation threshold 

optimization was carried out using only the 0.5 m resolution LiDAR height rasters to 

reduce redundancy.  Across all three study areas, incrementally changing the 

ground/vegetation threshold did not substantially improve the relationship between 
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LiDAR-derived and field-measured canopy cover estimates.  For example, increasing the 

ground/vegetation threshold to 27 cm slightly decreased the strength, R
2
 = 0.306 (p < 

0.01), and decreasing the threshold to 17 cm slightly increased the strength, R
2
 = 0.315 (p 

< 0.01), of the relationship between LiDAR-derived and field measured total canopy 

cover estimates.  When the ground/vegetation threshold was optimized for each study 

area the relationship between LiDAR-derived and field-measured canopy cover estimates 

was substantially strengthened. The strongest relationships between LiDAR-derived and 

field measured shrub and/or total canopy cover estimates with the smallest estimation 

errors were observed when the thresholds were 27 cm, 15 cm, and 30 cm for study areas 

1, 2, and 3 respectively (Table 8, Figure 9).   The results of the independent t-tests for 

each study area indicated no statistically significant difference between the optimized 

LiDAR-derived and field-measured total and shrub canopy cover estimates (p > 0.01). 

The effects of applying the optimized thresholds for each study area are displayed in 

Figures 10 and 11. 
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Table 8. Results of simple linear regressions performed using data from across all three 

study areas and from each study area to examine the relationship between LiDAR-

derived and field-measured canopy cover.  

    Adj. R
2a

 

  LiDAR Canopy Cover  All 

Study 

Area 1 

Study 

Area 2 

Study 

Area 3 

Total Cover 

 (Tree Included) 
0.5m Pixels  0.313 0.311 0.515 0.727 

 

1m Pixels 0.324 0.366 0.490 0.604 

 

Study Area Optimized 

0.5m  Pixels 
0.512 0.259 0.461 0.768 

      Shrub Cover   

(Trees Not 

Included) 

0.5m Pixels 0.282 0.322 0.492 0.665 

 

1m Pixels 0.296 0.385 0.474 0.557 

 

Study Area Optimized 

0.5m Pixels  
0.499 0.322 0.439 0.711 

a
p < 0.01 for all models 
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Figure 8.  Goodness of fit between field-measured and the LiDAR-derived shrub canopy 

cover estimates across all three study areas in the Reynolds Creek Experimental 

Watershed, Idaho (0.5m raster pixels). 
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Figure 9. Goodness of fit between field-measured and study area optimized LiDAR-

derived shrub canopy cover estimates in the Reynolds Creek Experimental Watershed, 

Idaho (0.5 m raster cells). 

y = 18.7 + 0.629x 

Adj. R
2
 = 0.322 

y = 23.8 + 0.491x 

Adj. R
2
 = 0.439 

y = 19.5 + 0.604x 

Adj. R
2
 = 0.711 

Study Area 1 

Study Area 2 

Study Area 3 
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Figure 10.  0.5 m LiDAR-derived and field-measured shrub canopy cover. The 

ground/vegetation threshold was 22 cm across all three study areas.   

 

 
Figure 11. 0.5 m study area optimized LiDAR-derived and field-measured shrub canopy 

cover. The ground/vegetation thresholds were 27 cm for study area 1, 15 cm for study 

area 2, and 30 cm for study area 3.  

 

 

 LiDAR-derived canopy cover deviated from field-measured shrub canopy cover by ~ 

20% (Table 9).  Study areas 1 and 3 consistently had lower mean RMSE and MSE than 

study area 2.  LiDAR data slightly overestimated shrub cover in study areas 1 and 3, 

MSE = 7.59 and 5.41, respectively, and underestimated shrub cover in study area 2, MSE 

= -22.15. When the ground/vegetation thresholds were optimized at the study area level, 

mean overall RMSE decreased by over 6% (RMSE = 12.86, MSE = -4.32).  The MSE of 
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study area 2 was nearly cut in half and shrub canopy cover was slightly underestimated at 

all study areas.  LiDAR-derived total canopy cover estimates had only slightly higher 

RMSE and MSE values than the LiDAR-derived shrub canopy over estimates (Table 9).   

Table 9. Comparative statistics between LiDAR-derived and field-measured canopy 

cover estimates. 

 

Shrub Canopy Cover    RMSE (%) MSE (%) 

0.5m Pixels Study Region 19.45 -4.96 

 

Study Area 1 13.90 7.59 

 

Study Area 2 26.07 -22.15 

 

Study Area 3 12.70 5.41 

    1m Pixels Study Region 20.94 0.54 

 

Study Area 1 16.47 11.98 

 

Study Area 2 24.23 -17.01 

 

Study Area 3 20.17 12.51 

    Study Area Optimized 0.5m Pixels Study Region 12.86 -4.32 

 

Study Area 1 11.67 -4.44 

 

Study Area 2 14.51 -3.25 

 

Study Area 3 11.58 -5.63 

   Total Canopy Cover (includes Trees)     

0.5m Pixels Study Region 19.60 -4.78 

 

Study Area 1 14.45 8.11 

 

Study Area 2 26.13 -22.37 

 

Study Area 3 12.70 5.77 

    1m Pixels  Study Region 21.30 0.88 

 

Study Area 1 17.23 12.58 

 

Study Area 2 24.28 -17.12 

 

Study Area 3 20.72 13.17 

    Study Area Optimized 0.5 m 

Pixels Study Region 13.63 -0.40 

 

Study Area 1 14.45 8.11 

 

Study Area 2 14.55 -3.05 

  Study Area 3 11.33 -5.39 
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LiDAR-predicted Canopy Cover Map 

The study area optimized ground/vegetation thresholds (study area 1 = 27 cm, study area 

2 = 15 cm, and study area 3 = 30 cm) were used to create a 30 m LiDAR-derived shrub 

canopy cover map.  Using Arcmap Map Algebra, the equation LiDAR-predicted shrub 

canopy cover = 0.55(LiDAR-derived canopy cover) + 21.5 was applied to create a shrub 

canopy cover prediction map. Figure 12 displays the results for study area 3. 

 
Figure 12.  30 m resolution LiDAR-predicted shrub canopy cover map for study area 3 

created by applying the regression equation coefficients using the equation: LiDAR-

predicted shrub canopy cover = 0.55(LiDAR-derived canopy cover) + 21.5. Study area 3 

RMSE = 11.33%.  

 

Statistical Analysis of Landsat-derived Canopy Cover Estimation 

Vegetation Indices 

The relationship between June Landsat bands, indices, or transformations and field-

derived total canopy cover was always weaker than between the October Landsat bands, 

indices, or transformations and field-measured total canopy cover (Table 10).  Of the 
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bands, October band 3 had the strongest relationship with field-measured canopy cover, 

(R
2
 = 0.164, p < 0.01). Of the vegetation indices, the October Landsat-derived MIRI2 

index had the strongest relationship with field-measured total canopy cover (R
2
 = 0.357, 

p < 0.01).  None of the tasseled cap transformations were significantly related to field-

measured total canopy cover. The independent t-test results indicated that all bands, 

indices, and transformations had significantly different (p > 0.01) means compared to the 

field-measured total cover mean.   

Table 10. Results of simple linear regressions performed using plots from the entire 

study region to examine the relationship between the bands and various vegetation 

indices of each Landsat 5 TM image and field-measured total canopy cover.  

 
  Adjusted R

2
 

Name 26-Jun 16-Oct 

Band 1 0.000 0.116 

Band 2 0.001 0.141 

Band 3 0.035 0.164 

Band 4 0.013 0.000 

Band 5 0.000 0.007 

Band 7 0.000 0.006 

VI 0.000 0.014 

GI 0.055 0.158 

NDVI 0.068 0.160 

SAVI 0.068 0.160 

SATVI 0.000 0.006 

MIRI 0.110 0.317 

MIRI2 0.119 0.357 

VNIR2 0.036 0.133 

tcapW 0.000 0.021 

tcapG 0.000 0.012 

tcapB 0.000 0.027 

* Italicized R
2
 values p  < 0.01 
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Spectral Mixture Analysis 

The October Landsat Matched Filtering (MF) band had the strongest relationship with the 

field-measured total canopy cover (R
2
 = 0.279, p < 0.01).  The multi-date composite 

Landsat MF band had a slightly weaker relationship (R
2
 = 0.268, p < 0.01).  The June 

Landsat MF band had the weakest relationship (R
2
 = 0.087, p < 0.01).  Neither the June, 

October, or multi-date composite infeasibility bands had a significant (p < 0.01) 

relationship with field-measured total canopy cover.  After examining the scatterplots of 

infeasibility values versus MF scores for each image and given that the October MF band 

had the strongest relationship, the October image was the only image used for further 

analyses.  The scatterplot of October MF and infeasibility values is depicted in Figure 13 

(n = 11,155). The quadratic equation was: y = 0.6148x
2
 + 1.2874x + 2.293 (R

2
 = 0.441, p 

< 0.01).  Study plot pixels with a MF score between 0 and 1.5 and an infeasibility value 

below 2 standard deviations of the quadratic regression curve had the strongest 

relationship with the field-measured canopy cover (R
2
 = 0.167, p < 0.01; Table 11).  

When the MF scores above 1 were normalized to 1 (i.e. assume 100% canopy cover for 

all pixels with an MF over 1) the relationship was slightly strengthened (R
2
 = 0.172, p < 

0.01).  
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Figure 13.  October Landsat MTMF-derived infeasibility values versus Matched Filter 

(MF) scores.  

 

Table 11. Results of the simple linear regressions performed using plots from the entire 

study region to examine the relationship between MTMF-derived and field-measured 

total canopy cover. 

 

     Parameters   

Infeasibility MF Score Adjusted R
2c

 

1 St. Dev.
a
 0 - 1 0.109 

2 St. Dev. 0 - 1 0.121 

1 St. Dev. 0 - 1.5 0.153 

2 St. Dev. 0 - 1.5 0.167 

1 St. Dev. Normalized
b
 0 - 1.5  0.158 

2 St. Dev. Normalized 0 - 1.5  0.172 
a
Includes infeasibility values that fell below 1(or 2) standard deviation above 

the quadratic regression curve. 
b
Normalized = all MF scores > 1 were reclassified as 1 

c 
p < 0.01 for all models 

0

5

10

15

20

-4 -3 -2 -1 0 1 2 3 4

In
fe

a
si

b
il

it
y
 V

a
lu

e
 

MF Score 

y = 0.6148x2 + 1.2874x + 2.293 

Adj. R2 = 0.441 

n = 11,155  



57 
 

Statistical Analysis of LiDAR and Landsat Data Fusion Canopy Cover Estimation 

Based on previous results, only October Landsat-derived bands, indices, and 

transformations were used for the stepwise linear regressions.  The results of each 

stepwise linear regression are outlined in Table 12. When the most significant Landsat-

derived variables, MIRI2 and tcapG, were fused with the study area optimized LiDAR-

derived canopy cover, it yielded a R
2
 of 0.588 (p < 0.01).  This model explains 13.4% 

more variability than using Landsat-derived estimates alone, but only 7.6% more 

variability than using LiDAR alone.   

Table 12. Results of the stepwise linear regressions performed to determine the most 

suitable Landsat bands, indices, transformations, and MTMF components for fusion with 

LiDAR-derived canopy cover data.   

 

Regression Model Input Predictor Variables       Adj. R
2 
 Significant Variables 

1 Landsat Bands 1-5, 7 0.373 Band 3 and Band 7 

    
2 All indices and transforms 0.454 MIRI2 and tcapG 

    

3 
MF score, infeasibility value, and 

all MTMF canopy cover estimates
a
 

0.342 
MF score, MTMF 

cover
b 
 

    

4 
Band 3, Band 7, MIRI2, tcapG, 

MF score, MTMF cover
b
 

0.454 MIRI2 and tcapG 

    

5 LiDAR cover
c
, MIRI2, tcapG 0.588 

LiDAR Cover, MIRI2, 

tcapG 

a
See table 11. Six different MTMF-derived canopy cover estimates were used. 

b
MTMF cover derived using threshold that had infeasibility values below 1 standard deviation above 

the quadratic regression and normalized MF scores 0 - 1.5   
c
Optimized LiDAR-derived total canopy cover. 
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Chapter 4: Discussion 

LiDAR Height Estimation 

The relationship between the field-measured and LiDAR-derived height estimates was 

strong even when the tree quadrats were not included.   The result of the simple linear 

regression between LiDAR-derived and field-measured maximum shrub heights (R
2
 = 

0.70) from this study is similar, even stronger in some cases, to those found by other 

raster-based studies in non-forested/low vegetation communities (Glenn et. al. 2011, R
2
 = 

0.07-0.64; Hopkinson et al. 2005, R
2
 = 0.11-0.81, Hopkinson et al. 2006, R

2
 = 0.49-0.67; 

Mitchell et al. in press R
2
 = 0.86; Streutker and Glenn 2006, R = 0.64; Su & Bork 2007 

R
2
 = 0.00-0.23).   

 The study areas were specifically chosen in areas of varying topography and species 

composition (Appendix 1).   The results of the regression analyses and the fact that the 

95% confidence intervals around the constants (y-intercepts) did not overlap between 

study areas confirmed that the vegetation composition in each study area were indeed 

quite different. The strongest relationship between the field-measured and LiDAR-

derived shrub height was always found in study area 3, regardless of whether or not the 

tree quadrats were included in the analyses.  These results are interesting given that it was 

first assumed that study area 1, which had the tallest shrub heights (mean field-measured 

height = 1.22 m), would have the highest R
2
 value compared to study areas 2 (mean = 

0.57 m) and 3 (mean = 1.09 m).  Study area 3 had the greatest variation in field-measured 

vegetation height with a standard deviation from the mean of 0.54 m compared to 0.41m 

for study area 1 and 0.36 m for study area 2.  This might indicate that LiDAR shrub 

height estimation performs better in areas with large height variability rather than areas 
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just containing tall vegetation.  In addition, the relatively strong relationship in study area 

2 dominated by vegetation height < 0.5 m, such as low sagebrush and gray rabbitbrush, is 

encouraging because there has been debate about whether or not LiDAR can accurately 

discriminate such low vegetation from the ground surface (Riano et al. 2007; Su & Bork 

2007; Weltz et al. 1994). To further evaluate the performance of LiDAR as a predictive 

tool of sagebrush steppe shrub communities, the relationships between LiDAR-derived 

and field-measured heights for pre-determined height categories were analyzed.  As 

expected, the results indicated that the relationship was best for the tree category, R
2
 = 

0.612, and then gradually decreased through the lower height categories with the low 

category having the poorest relationship, R
2 

= 0.292. The field height ranges for each 

height category were: low: 35-65 cm, moderate: 70-115 cm, high: 120-205 cm, and tree: 

210+ cm.  The corresponding LiDAR height ranges for each height category were - low: 

22-43 cm, moderate: 44-77 cm, high: 78-156, and tree: 157+ cm.  The regression results 

are likely due in part to difficulties distinguishing between very low vegetation and 

ground surfaces because of the height filtering algorithm used for processing the LiDAR 

data and/or the actual vertical accuracy of the LiDAR system (0.034 - 0.10 m).  Given 

these results, the relatively strong relationship observed for study area 2 may have been 

driven by the taller vegetation quadrats in the study area.  

 Comparative statistics for LiDAR-derived and field-measured maximum vegetation 

heights unanimously indicate that LiDAR underestimated true vegetation height across 

the study region (Table 4).  The LiDAR underestimation of shrub height is consistent 

with previous studies (Bork and Su 2007; Gaveau and Hill 2003; Glenn et al. 2011; 

Hopkinson et al. 2005; Hunt et al. 2003; Mitchell et al. in press; Mundt et al. 2006; Riano 
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et al. 2007; Sankey and Bond 2011; Su and Bork 2007; Streutker and Glenn 2006). This 

underestimation may be attributed to a number of different factors.  Firstly, to properly 

calculate the maximum vegetation height using LiDAR data, the ground and non-ground 

returns must be accurately separated.  In arid and semi-arid rangelands, vegetation is 

typically short and sparse making it even more difficult to separate ground and vegetation 

returns (Mitchell et al. in press).  A number of automated filtering methods have been 

used, depending upon the type of terrain and vegetation density associated with the study 

area, but none have proved to be 100% accurate (Liu 2008).  Secondly, rasterization is 

commonly performed to accelerate data processing and analysis, but the interpolation 

method used to rasterize the point cloud data may introduce errors (Bater and Coops 

2009; Hodgson and Bresnahan 2004; Hopkinson et al. 2006; Liu 2008).  However, 

Mitchell et al. (in press) found that 0.5 – 1.0 m pixel rasterized point cloud sagebrush 

height data had just as strong of a relationship (R
2
 = 0.86) with field-measured sagebrush 

height as the point cloud data  (R
2
 = 0.84). The choice of interpolation method used for 

rasterization depends on the topography and vegetative characteristics of the study area of 

interest as well as the LiDAR point density and desired spatial resolution of the raster.  

For this study, natural neighbor interpolation was used as previous studies in sagebrush 

steppe ecosystems have found it to be most suitable (Glenn et al. 2011; Mitchell et al. in 

press; Sankey and Bond 2011).  Thirdly, penetration of the LiDAR pulse into the canopy 

of vegetation before it returns back to the sensor is another contributing factor.  

Depending upon the LiDAR point density and the vegetation of interest, the likelihood of 

the pulse actually hitting the very top of the vegetation canopy may vary (Gaveau and 

Hill 2003; Lefsky et al. 2002; Mitchell et al. in press).  This issue is only amplified when 
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detecting the heights of shrubs such as low sagebrush, big sagebrush species, and 

antelope bitterbrush because the leafy vegetation of these species is typically quite sparse.  

Fourthly, it was questioned whether or not there was significant growth in the shrub 

species of the study region between the time of LiDAR acquisition, November 2007, and 

field data collection, June and July 2010.  The results of the shrub height and age 

analyses found few statistically significant relationships to be able to determine how 

much growth occurred. When statistically significant, the R
2
 values were all less than 

0.218 (Table 5).   Therefore, it is not feasible to reliably estimate the annual height 

growth for any shrub species.  Furthermore, the RCEW has had no major disturbances, 

such as wildfire, for over 70 years. Thus, the vegetation is well beyond the recovery stage 

and a drastic change in vegetation height was not expected (Sankey and Bond 2011).   

 Other factors introducing error in vegetation height may include sensor-related errors 

associated with horizontal and vertical accuracy, field measurement error, and errors due 

to the topography of the study areas (Bater and Coops 2009; Hodgson and Bresnahan 

2004; Spaete et al. 2011; Su and Bork 2006 ).  Based on slope, the complexity of the 

topography within each study area was very similar. Approximately 50% of the LiDAR 

quadrats within each study area were located in areas with > 15 degree slope and only 

~5% were located in areas with > 25 degree slope (Appendix 1, Figure 15).  Spaete et al. 

(2011) found that mean ground elevation RMSE of a 1 m LiDAR-derived DEM was 1.3 

– 2 times greater in study plots with slope > 10 degrees and that RMSE varied 

significantly between plots of different cover types (herbaceous, low sagebrush, and big 

sagebrush). Hodgson and Bresnahan (2004) observed elevation errors to be twice as large 

in areas with steep slopes (> 25 degrees) compared to areas of lower slopes.  Errors 
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associated with ground elevation are directly related to errors in vegetation height; 

vegetation height is calculated by subtracting the LiDAR digital elevation model raster 

(ground) from the LiDAR digital surface model raster (vegetation canopy).  Glenn et al. 

(2011) found that slope had little influence on LiDAR sagebrush height estimation; these 

results may be due to the fact that this research was done at the individual shrub level 

while the previously mentioned research was done at >= 1m
2
 plot level.   

 Although the overall discriminant function classification of various shrub height 

categories only had moderate agreement (KHAT = 0.562), results are encouraging given 

the relatively high producer‟s and user‟s accuracies for the low and tree categories (Table 

7d). Regardless of the type of LiDAR data (transformed or untransformed) or 

classification probabilities (equal or prior) used, there was always confusion between the 

moderate and high height categories with user‟s and producer‟s accuracies in the 50-60% 

range.  Because the tree category was not the focus of this study, there were a 

disproportionately low number of field quadrats (23 total) for this category and the 

resultant classification accuracies may have been biased. However, the results of the 

accuracy assessment comparing only the quadrat with shrub species indicate this was not 

the case. The probability map helped better interpret the results of the discriminant 

function classification and further depicted the confusion between these classes. 

Although not all shrub species could be discriminated from one another solely based on 

LiDAR-derived height (Figure 5), shrub species composition of the entire study areas 

would be best predicted using a categorical map of vegetation height (low, moderate, 

high, and tree) and the corresponding probability of accurate classification map along 

with the frequency data for each shrub species (Figure 6).   
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 This research is one of the first attempts to classify different shrub communities 

solely using LiDAR-derived height values (Bork and Su 2007; Martinuzzi et al. 2009; 

Sankey and Bond 2011). The results using different height categories had encouraging 

initial findings and warrant further research.  Many researchers chose to integrate spectral 

data with LiDAR height data (Bork and Su 2007; Maxa and Bolstad 2009; Mundt et al. 

2006; Riano et al. 2007).  Further research discriminating sagebrush steppe shrub species 

should be conducted by fusing LiDAR structural data with imagery spectral data to 

potentially increase classification accuracy results.  Overall, these findings strongly 

suggest that a discrete-return LiDAR system with a moderate point density (~5.6 

points/m
2
) is a valuable technology for accurately estimating maximum vegetation height 

in ecosystems with heterogeneous, low statured vegetation such as sagebrush steppe. 

LiDAR-derived Canopy Cover Estimation 

This research was the first attempt to estimate shrub canopy cover in a sagebrush steppe 

ecosystem using discrete-return LiDAR data.  The results indicated that there was a 

significant relationship between LiDAR-derived and field-measured canopy cover 

estimates.  Even study area 2, which is composed of the lowest and sparsest vegetation 

(mean height = 0.57 m), had a significant relationship between LiDAR-derived and field-

measured canopy cover.  An independent t-test also indicated that there was no 

statistically significant difference between the means of LiDAR-derived and field-

measured canopy cover for each of the study areas (p > 0.01).  This is an encouraging 

finding given that there has been some debate about whether or not LiDAR could 

accurately discriminate such low height vegetation from the ground surface (Riano et al. 

2007; Su & Bork 2007; Weltz et al. 1994).   
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 The strongest relationships were obtained by setting unique ground/vegetation 

thresholds for each study area instead of using the same threshold for all three areas 

(Table 8).  This was not unexpected given the substantial differences in vegetative 

composition of each study area.  The study area optimized regression model explained ~ 

20% more variance than the original, single threshold model. Generally, determining a 

single threshold was challenging because incrementally increasing or decreasing the 

ground/ vegetation threshold across all three study areas did not significantly change the 

relationship between LiDAR-derived and field-measured canopy cover.  This suggests 

that using the lower 95% confidence interval value of the low shrub category height 

range was a good method for setting the ground/vegetation threshold across the larger 

study region.  Regression results were only slightly better when the tree category was 

included. Given that LiDAR-derived height was used to estimate canopy cover, the 

significant relationship between LiDAR-derived and field-measured canopy cover was 

likely due to the strong relationship between LiDAR-derived and field-measured height 

for all height categories (low, moderate, high, and tree; Table 2).  

 These results are similar to the findings in previous research and even improved in 

some cases. Su and Bork (2007) did not find a significant relationship between the 

LiDAR-derived and field-measured canopy cover of two shrublands (p > 0.05) and had 

RMSE values of 26-28%, compared to 13-20% found in this research. Their lack of 

relationship may be attributed to the relatively low LiDAR point density for their study 

area, 0.54 points/m
2
,
 
whereas this research had relatively high LiDAR point density, 5.6 

points/m
2
. In a forested community, Chen et al.‟s (2004) research demonstrated a 

moderate relationship between LiDAR-derived and field-derived Leaf Area Index, R
2
 = 
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0.53 (p < 0.01).  Griffin et al. (2008) found a very strong relationship (R
2
 = 0.84) between 

LiDAR-derived and field-measured forest canopy cover as well as a low RMSE (9%).  

Hopkinson and Chasmer‟s (2009) LiDAR-derived fractional vegetation cover was 

significantly related to field-measured fractional vegetation cover in a forested 

community, R
2
 = 0.58-0.75 (p < 0.01).  The stronger relationships between LiDAR-

derived and field-derived cover in the forested communities is to be expected as forested 

communities are generally occupied by tall (> 3 m) and dense vegetation which is more 

easily detected by LiDAR pulses.  For this research, pixels with a maximum height value 

of > 1 m for study areas 1 and 2 and pixels with maximum height values > 2.1 m for 

study area 3 were considered trees. 

 As discussed in the height section (page 58), there are some inherent assumptions and 

errors when using LiDAR data for the estimation of vegetation parameters. To strengthen 

the relationship between LiDAR-derived and field-measured canopy cover, future 

research should examine different field methods or the use of LiDAR intensity data.  For 

this study, a point intercept method was employed. Better results may be obtained by 

trying different methods such as line intercept, especially in a rangeland ecosystem 

(Connelly et al. 2003).  The traditional line intercept method involves laying out a line 

transect and then measuring the amount of live shrub canopy that intersects the line 

transect, excluding large spaces between foliage.  The amount of total live cover is then 

divided by the length of the whole transect (i.e. 600 cm of live shrub cover/3000 cm 

transect length = 20% shrub cover).  It is also recommended that the height of each shrub 

intersected should be recorded.  As this research demonstrated, not all shrub species 

could be separated based on LiDAR height alone.  Percent canopy cover for each shrub 
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species, therefore, could not be determined using LiDAR data.  It would be possible to 

calculate the percent cover at the height category level if the height was also recorded. In 

addition, recording the species would provide information about shrub species 

composition.  This research estimated canopy cover for 30 x 30 m plots.  Future 

researchers could evaluate the utility of LiDAR for canopy cover estimates at different 

resolutions.  LiDAR intensity data has become increasingly popular for the classification 

of various land cover types and for cover estimation and its utility should be explored for 

sagebrush steppe ecosystem classification and cover estimation (e.g. Bao et al. 2008; 

Hopkinson and Chasmer 2009; Korpela 2008; Wang and Glenn 2009).  The results in this 

study demonstrated that small-footprint, discrete-return LiDAR data could be used to 

successfully estimate the percent shrub and total canopy cover in a shrub-dominated 

ecosystem such as a sagebrush steppe at the 30 m resolution scale.      

Landsat-derived Canopy Cover Estimation 

Vegetation Indices 

Although a number of Landsat bands and vegetation indices had a statistically significant 

(p < 0.01; Table 10) relationship with field-measured total cover, the relationships were 

weak, resulting in low R
2
 values.  Furthermore, none of them had statistically similar 

means to the field-measured total canopy cover mean. This indicates that the information 

derived from Landsat could not be used to quantify total canopy cover but potentially as 

an indicator that a target species is present.  Landsat band 4 (NIR) is typically deemed 

important for detecting vegetation, but did not appear to be for this research. Other 

studies have also noted this trend (e.g. Ramsey et al. 2004; Sivanpillai et al. 2009) and it 

is most likely due to the sparseness of vegetation in the study region and the influence of 
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background soils, resulting in low NIR values.  In this study, the October band 3 (red) 

had a strong relationship with field-measured canopy cover.  The chlorophyll pigments of 

vegetation absorb red light while most soils reflect it. It is, therefore, useful for 

distinguishing between vegetation and soil (Campbell 2007; Jensen 2005).  The October 

MIRI2 index, which utilizes band 3 and band 5, performed the best overall.  Band 5 is 

sensitive to canopy moisture content, so the MIRI2 would be sensitive to a contrast of 

moist vegetation and dry soil (Jensen 2005). The October image outperformed the June 

image and the multi-date composite. In October, most of the grasses had likely senesced. 

This suggests that total canopy cover of shrubs and/or trees can be better depicted using a 

late summer image.   

 The results of the regression analyses between various Landsat bands, indices, and 

transformations and field-measured total canopy cover of this study are similar to those 

found by other researchers. Chen (1999) demonstrated R
2
 values of 0.00 – 0.51 when 

comparing field-measured saltbrush cover and various Landsat bands and indices.  Chen 

and Gillieson‟s (2009) research resulted in R
2
 values of 0.00 – 0.63 when they regressed 

various Landsat bands and indices and field-measured total cover of a semi-arid 

rangeland.  Todd et al. (1998) found moderate relationships between Landsat indices and 

field-measured biomass estimates (R
2
 = 0.35 – 0.70) for a grazed and ungrazed shortgrass 

steppe.   

Spectral Mixture Analysis 

The MTMF-derived total canopy cover estimates had only a weak relationship with the 

field-measured canopy cover (R
2
 = 0.109 – 0.172, p < 0.01) and the MF scores had only a 

moderate relationship (R
2
 = 0.279).  When field-measured total canopy cover and MF 
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scores were compared, no consistent under- or overestimation was depicted.  Similar to 

the Landsat-derived vegetation indices, this indicates that MTMF-derived information 

may not be suitable for the estimation of total canopy cover and may only be useful for 

detection.  Other researchers have concluded the same (Mitchell and Glenn 2009a; 

Sankey et al. 2010).   

Challenges and Limitations 

There are many challenges and limitations when using Landsat imagery for the detection 

and estimation of vegetation cover in a semi-arid rangeland.  Landsat has a fairly coarse 

resolution (30 m) and provides limited spectral information.  Properly geo-registering 

Landsat imagery with field reference data may be difficult.  Weber (2006) noted that a 

single point can be geolocated to within ± 0.5 pixel. That translates to ± 15 m for Landsat 

data.  Due to the inherent nature of semi-arid rangelands, the moderate spectral 

information provided by Landsat may not be able to properly depict the typical 

spectrally-similar and sparse vegetation. The spectral similarities between the vegetation 

and bare ground of the study region also made it very difficult to find a suitable 

endmember for the MTMF spectral unmixing.   

LiDAR and Landsat Data Fusion Canopy Cover Estimation 

The results of the stepwise linear regression to fuse LiDAR- derived total canopy cover 

estimates and Landsat-derived information proved to be a moderately successful method, 

although fusing the two different sources of information increased the predictive ability 

to estimate field-measured total canopy cover.  LiDAR-derived total canopy cover 

estimates had already resulted in R
2
 of 0.51 and 0.77, which were the highest found 

across all three study areas and at the individual study area level, respectively.  The 
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results of the stepwise regression indicated that MTMF spectral unmixing data was not a 

significant predictor of total canopy cover when other Landsat-derived band, index, or 

transformation data were available. Overall, the October MIRI2 index and tcapG were the 

most significant Landsat-derived predictors of total canopy cover to combine with the 

LiDAR-derived total canopy estimates. Fusing these two variables with the LiDAR data 

increased the regression R
2
 by 13% over the Landsat data alone (R

2
 = 0.454). In 

comparison, the fusion resulted in smaller improvements, 7%, in total canopy prediction 

than using LiDAR data alone (R
2
 = 0.512). Given such results, there is little incentive to 

fuse the two data sets to improve the predictive ability over the LiDAR data alone.  

 Imagery with higher spectral and spatial resolution might be more advantageous to 

fuse with LiDAR data to provide a clearer picture of what is found on the ground.  In a 

semi-arid sagebrush steppe ecosystem, a 30-m pixel will most certainly contain a mixture 

of vegetation species and soil.  This research tried to overcome this challenge by using 

spectral unmixing and various spectral indices and transformations but with only minor 

improvement to the LiDAR results. Higher spatial and/or spectral resolution imagery of 

the use of instrumentation with better signal to noise ratios could help minimize the 

influence of background soil and vegetation heterogeneity found in pixels of lower spatial 

and/or spectral resolutions (e.g. Asner and Heidebrecht 2002; Mitchell and Glenn 2009b; 

Mundt et al. 2006; Stitt et al. 2006).  Alternative classification techniques such as object-

oriented classification may also be considered as a means for quantifying cover (e.g. 

Laliberte et al. 2004; Laliberte et al. 2007a; Laliberte et al. 2007b; McGlynn and Okin 

2006; Stow et al. 2008). 
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Chapter 5: Conclusion & Summary 

Each of the objectives of this research was met with encouraging and informative results 

using straightforward and replicable methods.  1) There was a strong relationship 

between LiDAR-derived and field-measured vegetation heights. 2) Although this 

research found that LiDAR height alone cannot determine shrub species, LiDAR-derived 

maps of vegetation height category and probability of correct classification along with 

shrub species frequency data can provide a good indication of species composition. 3) By 

optimizing the ground/vegetation thresholds for estimating canopy cover at each of the 

three study areas, the overall strength of the relationship between LiDAR-derived and 

field-measured canopy cover estimates was markedly improved and estimation errors 

were decreased. 4) Landsat 5 TM spectral bands, indices, transformations, or spectral 

unmixing did not substantially improve LiDAR canopy cover estimation. LiDAR alone 

was sufficient for the estimation of shrub and total canopy cover in a sagebrush steppe 

environment.  

 Future studies should investigate different field methods for estimating canopy cover 

such as recording vegetation height along with presence/absence data and using a line-

intercept method. It is also recommended that the utility of LiDAR for canopy cover 

estimates be evaluated at different spatial resolutions. The use of LiDAR intensity data 

for separability between ground and vegetation for cover estimation and height 

discrimination should be investigated. Finally, the fusion of LiDAR data with high 

spectral or spatial resolution imagery can be explored, potentially using relatively new 

techniques such as object-oriented classification. 
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 LiDAR technology can supplement data needed for making land management 

decisions as well as minimize the amount of time and money spent collecting field data 

across vast and oftentimes inaccessible rangeland communities. LiDAR data provides the 

important vegetation structural components that most other remote sensing technology 

cannot provide. LiDAR-derived vegetation height and canopy cover maps could be used 

to predict wildlife habitat, conduct long-term monitoring and habitat change assessment, 

and create wildfire fuels maps.  Depending upon the LiDAR point density, the resolution 

of these maps can be tailored to land management needs.  This research provides new and 

pertinent information to the currently limited knowledge of the utility of LiDAR for non-

forested communities.    
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APPENDIX 1: STUDY AREA DESCRIPTIVES 

Study Area One 

 

North 
~ 1 Km 

Elevation: 1271 – 1640 m 
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Study Area Two 

 

North 

~ 1 Km 

Elevation: 1709 – 2073 m 
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Study Area Three 

 

North 

~ 1 Km 

Elevation: 1518 – 1870 m 
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Figure 14. Histogram of aspect values across all LiDAR quadrats in all three study areas in the Reynolds Creek Experimental 

Watershed, Idaho.  
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Figure 15. Histogram of slope values across all LiDAR quadrats in all three study areas in the Reynolds Creek Experimental 

Watershed, Idaho. 
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APPENDIX 2: LINEAR DISCRIMINANT ANALYSIS 

Linear discriminant analysis is typically considered a multivariate statistical analysis 

because it has traditionally used multiple categorical variables to calculate the 

discriminant function but in the case of this research, only one categorical variable was 

used.  Discriminant analysis is related to but not the same as traditional classification 

analysis and is different than classification for a number of reasons: (1) it requires a priori 

knowledge about the relationships between validation pixels, (2) the number of 

categorical groups is decided before group membership prediction, and (3) each 

validation pixel is assigned to a group prior to analysis (Davis 1986). There is considered 

to be 2 types of discriminant analysis, predictive and descriptive.  Predictive discriminant 

analysis is used to predict the group membership of a new observation while descriptive 

discriminant analysis is used to determine the best separability between categorical 

groups (Williams 1983).  Since the ranges of the shrub height values for each height 

category were determined prior to analysis, only predictive discriminant analysis was 

necessary for this research.     

 In order to predict group membership of new observations, discriminant analysis 

is used to derive a discriminant function (Klecka 1980): 

           𝑥     𝑥       𝑥  

where hk is the score for group k and the b‟s are the canonical coefficients.  Each new 

observation is classified into the group with the largest h.  The canonical coefficients are 

computed by: 

          ∑    𝑥  
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where n is the total number of observations overall all the groups, g is the number of 

groups, p is the number of discriminating variables, and a is an element from the inverse 

of the within-groups sum of cross products matrix (calculation not shown here, see Davis 

1973, p. 480-483).  The constant term is computed by: 

         ∑    𝑥  
 
    

The canonical discriminant function is applied to each new observation to get a 

discriminant score that is used to determine which group it is predicted to be a member 

of.  Group membership can be determined by calculating a generalized (Mahalanobis) 

distance measure: 

               ∑ ∑     𝑥  𝑥   (𝑥  𝑥  )
 
   

 
    

where D
2
(X|Gk)is the squared distance from point x (a  specific observation) to the 

centroid of group k.  D
2
 is calculated for each group and each new observation would be 

classified as the group with the smallest D
2
.  The closer the distance to the closest group, 

the higher the probability of group membership.  The probability that a new observation 

is a member of group k can be computed by: 

      𝑥  
         

∑          
 
   

 

where Pr (x|Gk) is the estimate of the proportion of observations in the group k‟s 

population that are further from the centroid than x is.   

 The assumptions of linear discriminant analysis include: 1) the population data is 

normally distributed, 2) the population covariance matrices are equal for each group, 3) 
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the discriminating variable(s) must be interval or ratio levels of measure 4) the number of 

discriminating variables must be less than the total number of cases minus two 5) no 

discriminating variable may be a linear combination of other discriminating variables 6) 

the probability of group membership is identified and assigned to each group prior to 

analysis, 7) there must be two or more groups for classification, and 8) each group must 

have at least two cases (Klecka 1980; Williams 1983).  Using prior probabilities 

essentially normalizes the data by eliminating differences in samples sizes of each 

category.  The results produced using prior probabilities for normalization is meant to 

better represent the accuracy of the classification (Jensen 2005).   
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